
Kyoto University 21st Century COE Program

New directions in document formatting:

What is text?

Chris Rowley1) and John Plaice2)

Abstract
What is text? Beyond, that is, material ‘tagged’ as CDATA in the mark-up syntax jargon. Is it just

undifferentiated strings of bytes? Or of ‘characters’? . . . But then, what is ‘a character’?
These are the most basic of many important questions whose investigation is timely in light of the rapid

global spread of the ‘XML paradigm’ for documents and networked applications of all types. They lie
behind our more radical questioning of current models of text strings in software, asking whether these
are adequate even for ‘alphabetic scripts’ such as those used in Europe, and ‘syllabic scripts’ used, for
example, in Southern Asia, let alone for the ‘logographic’ or ‘ideographic scripts’ of Eastern Asia.

Therefore this paper launches a study of ‘text in computers’, aiming first at a basic understanding of
useful abstractions for ‘characters’ and ‘character-strings’ and asking whether the same abstractions can
be usefully applied to all ‘natural languages’? At an implementation level, through this programme we
shall determine how best to represent the true nature of ‘text strings’ in an application-independent way.

This is the important first step on the road to developing the many complex models and algorithms that
are required to solve current problems posed by the desire to improve the automated handling of all text,
in all contexts and in all its aspects. Our resulting interfaces and implementations will certainly make
it feasible for a larger variety of text-handling applications both to achieve far better results and also to
communicate usefully with each other.

1 What is the text in ‘What is text? ’

First we must emphasise that we are not here
discussing the structure of the text (in the sense
of ‘XML-style document structure’) but in contrast
it is the text itself, as represented within computer
software, that is our subject matter. Neither are
we primarily concerned with low-level representa-
tion details for text files (such as Unicode v?.? or
Unicode+ or . . . ) nor with particulars of byte-level
encodings (e.g., the ‘mime-type’). Rather our con-
cerns lie in those crucial, but sadly neglected, levels
between the structure and the encoding of the doc-
ument:1

• What is represented/contained in ‘text files’
and the ‘text fields’ of document structures?

• Its atoms, its structure, its transformations.

• Its use by multiple applications.

This is a subject that has never been studied
in a coherent way and such essential information

1)Faculty of Mathematics and Computing Open University
1–11 Hawley Crescent London NW5 8NP, UK

2)School of Computer Science and Engineering The Uni-
versity of New South Wales Sydney, NSW 2052 Australia

1test
test

about the ‘text in a file’ is normally non-existent.
Indeed, neglect by the software industry has led
to the current unsatisfactory paradigm in which,
although ‘text files’ may have some minimal asso-
ciated information to indicate how to interpret the
byte-strings therein, more often this deciphering is
left to the Operating System or even to a partic-
ular application’s intelligence, combined with any
assumptions it decides to make about the text. An
example of typical current commercial ‘best prac-
tice advice’ for handling multi-lingual text can be
found at http://www.opengroup.org/products/

publications/catalog/c616.htm.
At best, all that is known about a ‘text file’ will

typically be that it is a stream of ‘encoded charac-
ters’ (e.g. it uses code-page cp852 or Unicode v1.0).
And even if the file has some internal structure,
it probably contains much of its useful informa-
tion content entirely within such ‘text strings’ about
which little is known, often not even what ‘language’
they are in!

2 Why ask such a question?

This research had its origins in in our efforts
to automate the production of high-quality visual
representations of text in a wide variety of scripts



and languages [9, 10] and in discussions with other
researchers working on related aspects of automated
document and text processing [5, 6, 4]. Such input
led us gradually to understand that in order to be
able to do anything useful with the information con-
tent of text it is essential to realise that the useful
content of a text string is not all contained in the
typical ‘character string’ that we were trying to deal
with.

Further investigation of this phenomenon showed
that, although investigation of the nature of ‘text’
seems strangely to have been eschewed by the
experts on document processing (both implementors
and researchers), its relevance has been recognised
by thinkers in related areas who appear more open
to those aspects of text that are independent of any
visualisation.

“[We need] to represent digitally the literary forms of
connection which could not be represented before.”

Ted Nelson
http://www.xanadu.com.au/ted/XUsurvey/xuDation.html

“I expect these [ideas] to greatly clarify and speed
up the work of prose workers (those who use text
without fonts — like authors, lawyers, film-script
managers, speech-writers, paralegals).”

Ted Nelson
http://ted.hyperland.com/TQdox/zifty.d9-TQframer.

html

“Electricity, from the time of the telegraph, whipped
language into shape, made it ubiquitous, instant and
now, digital.”

Derrick de Kerckhove
Text, Context and Hypertext, three conditions of

language, three conditions of mind ([3],
pages 15-19.)

To these we would add two more:

“It is natural to represent written language in com-
puters as character strings in text files. Indeed, the
current trend is to use ‘text files’ (XML) to represent
everything in a computer!”

“That which is potentially never visualised must
surely exist independent of its visual form?”

Thus, whilst we started by thinking of text in
computers as just an abstraction from the visual
form of ‘positioned glyphs’, we now see text as being
important in itself, independent of its visual form.
We therefore proceeded to seek a formalisation of

the semantics of this abstraction that is useful to
all ‘text applications’, i.e., all those that use this
abstraction, if only implicitly.

3 History: characters then and now

All text that we now know from more than about
100 years ago is solely in its visual form and so it
can all be described within software using ‘glyphs in
fonts’; of course, the idea of ‘glyph’ and ‘font’ must
be interpreted here in a very general and unspe-
cific sense, at least for texts prior to the wide-
spread standardisation of the printing industry. In
many ways the biggest change in the accessibility
and perception of ‘mechanised text’ came with the
almost simultaneous introduction of ‘personal text-
visualisation machines’ — probably the typewriter
was the first — and electro-mechanical communica-
tion of text — the electric telegraph. These both
date from the mid 19th Century in Europe and
North America.

Relatively quickly, as soon as the late 20th Cen-
tury, these technologies had evolved into their elec-
tronic successors which are of course legion, from
text messaging to literary archives, and widespread,
from farming and fishing villages to communications
beyond the limits of our solar system.

Throughout the development of formalised writ-
ing, from tally marks through official records to lit-
erary manuscripts, on to hand printing, machine
printing then automated typesetting, there has been
a tendency at each stage to restrict the visual forms
available to represent text. For example, the for-
mal style of a particular monastic tradition limits
the flexibility allowed to an individual scribe; print-
ing further restricts the available visual forms, and
later mechanisation leads to the introduction of a
fixed collection of founts, each containing a rela-
tively small and uniform set of glyphs.

The idea of ‘the character’ as a non-visual artifact
emerges very late in this process, and the word was
not at all used in this sense until the beginning of the
mathematical study of symbol strings in the 1930s.
Even then the only uses of the word recorded by
the Oxford English Dictionary are for what we here
call a‘a glyph’. This idea developed from that of a
‘simplification of the glyph’ that is needed to fit the
varied visual forms into a small machine: either a
physically small machine like a typewriter; or a dig-

2



itally small machine such as Morse code for the tele-
graph or the 5-bit text encoding used on paper tapes
in the mid-20th Century (see http://www.cwi.

nl/~dik/english/codes/5tape.htm). The ‘coding
solutions’ of these technologies had a large impact on
the written language of the time, much as ‘txt msgs’
may be doing nowadays. In particular, the his-
tory of the electric telegraph with its language of
‘telegraphese’[12], and the important commercial
businesses that grew up to support it with code
books, operating systems, etc., is extensive and fas-
cinating but largely forgotten.

The rapid changes of the late 20th Century have
seen off such size limitations and we now have the
basic technology to expand the size and scope of
‘text machines’ enormously since even the physi-
cally small (and shrinking daily) phones and PDAs
are ‘very big machines’. But maybe we also have
the wisdom to know that using this potential can
make the task of the software engineer more difficult.
However, for whatever reason, applications that
fully utilise this vastly increased text-processing
power are not being developed, maybe because this
remains an ad hoc and potentially difficult, unpro-
ductive task as long as that text is just ‘strings of
characters’. Thus, now that we have the comput-
ing power to reverse the trend of simplification that
produced and strengthened the rôle of ‘the abstract
character’, it is time to tackle some fundamental
questions:

• How can we best use this power to capture the
full information content of text?

• Can we retreat from the long process of sim-
plification of glyphs and the emergence of the
simplistic notion of the modern ‘character’?

• Should we abandon these ‘characters’ now that
they are no longer needed for their original pur-
pose of squeezing text into small machines?

4 Text, scripts and language

Another approach to the investigation of ‘the
character phenomenon’ is to look at whether this
concept, as developed to encode only the ‘Roman
script’, makes any sense for other scripts. This study
needs to involve various types of expertise, from
researchers who study various aspects of scripts to

the developers and, most importantly, users of text-
based applications in the widest possible variety of
languages.

Other papers in this volume suggest strongly that
the utility of the ‘Western character concept’ has
not yet been fully evaluated for ‘CJK scripts’ and
we also are aware that that in South Asia there
is still much discussion on the meaning and use of
‘character-based’ encodings of syllabic scripts [7]. So
for many (maybe all) of the world’s languages, we
still need to answer the following questions, even if
we accept as useful the Unicode definition of a char-
acter:

• What are the ‘atomic characters’ for various
languages?

• Do such ‘Unicode characters’ exist in real
languages?

• Are they useful within text applications
in these languages?

Even if we assume that the atoms of the writ-
ten form of a particular language can usefully be
described as ‘characters’, we still need to ask this
question for that language:

• Can written text be usefully represented as sim-
ply a ‘string of atomic characters’?

It is reasonably clear that this paradigm of the
‘atomic character’ can lead to a useful, if limited,
abstraction of text for ‘alphabetic scripts’: one in
which a simplified form of written text becomes a
‘string of characters. But can this idea be produc-
tively extended to syllabic scripts?

For logographic scripts there must be radically
different models that better represent text; the Uni-
code approach to such languages, which attempts to
represent the text by encoding as ‘characters’ only a
subset of the ‘words’ in the language, seems bizarre
to us. However, we can easily see advantages in
adding such word-encodings to the repertoire of pos-
sibilities for representing languages such as English
where the relationship between the ‘spelling’, pro-
nunciation and meaning of words is of a similar level
of complexity and fluidity.

It is already well established (see [6] on Unicode
and language) that ‘Unicode strings’ will not suf-
fice for any natural language (other than, perhaps,

3



XMLish and Unicodese!). Something we shall here
call a ‘language tag’ is always essential since it is the
name of the ‘context’ in which the ‘text string’ must
always be interpreted. Thus this tag is as much part
of the text as the words and punctuation within it,
they are inseparable. Sadly, although this reality
has long been understood and accepted by the Uni-
code gurus, they still insist that the tag be supplied
by XML mark-up and that it is the duty of appli-
cations to ensure this inseparability of the tag from
the text; we know of no applications (even structure-
based editors) that support this concept of ‘inalien-
able tags’ so this is not a productive intransigence
(see Section 8).

The Unicode standard mandates many properties
of individual characters but no properties of the
strings that are the only reason for the presence
and use of these characters. More generally, there
is no standard means for adding to the text, or a
part thereof, contextual or structural information.
This contextual information, of course, includes the
essential ‘language tag’, but also extends to infor-
mation about, for example, when the document was
written, in what style, in what country; and about
how it is to be read, and so on and so forth. It is
our general belief that all text should, at least, be
supplied with contextual information to an arbitrary
level of detail, in a way consistent with the second
author’s work in intensional versioning [11].

5 Analysis

So what is this thing called ‘text’? Or rather,
what should it be if it is ever going to be generally
useful to all applications?

Possible answers (with commentary) are:

• just strings of bytes?
yes — at the lowest level ;

• just strings of ‘encoded characters’?
often — unfortunately !

• just strings of ‘characters’?
maybe — but this leads to the question:
What are these ‘characters’?

Anyone who uses an even slightly advanced text
application (especially if they do not use only
English text) will understand that intelligible text

certainly has to be a lot more than ‘character
strings’, however these are held as byte strings.
The complexity (both technical and political) of this
statement becomes apparent as soon as one delves
into the world of Unicode, the most comprehen-
sive effort so far to reduce the chaos of the current
relationships between ‘byte strings’ and ‘character
strings’.

But even Unicode itself has been changing rapidly
throughout its life; and recently both the pace and
the incohesive nature of this expansion seem to have
increased considerably. Yet, as Yannis Haralambous
and many others [1, 2] continue to point out, the
standard still has glaring deficiencies and an almost
wholly political extension mechanism.

More pertinent to our current ideas is that the
Unicode philosophy brushes aside important ques-
tions about ‘what characters are’ and about their
use in conveying information in text. The ‘Unicode
definition’ [14] of a character makes them indivisi-
ble atoms of meaning but this definition, and its use
within the Unicode paradigm, hides many assump-
tions:

• that such atomicity exists;

• that it is fixed;

• that the ‘meaning of a text string’ can be
derived synthetically from its representation as
a string of such atoms.

We are therefore led to the following question (in
the title of the next section).

6 What do we do with text?

Perhaps the most general summary of the use
of text is to ‘Communicate in a natural language’.
Whilst we realise that, at least in an aesthetic sense,
a text string can be simply das Ding (communicat-
ing nothing but itself), more often it is intended to
hold some information that has an existence inde-
pendent of the text itself. Expressing ideas in writ-
ten natural language inside a computer is far more
than the production of ‘character strings’ . . . it is a
sophisticated creative process and an important part
of the wider-ranging craft of ‘information design’.

In our research we do not at all wish to limit
what is considered to be a ‘natural language’; but

4



we are happy if others do so, for clarity, so long as
they allow us to include our particular interests of
mathematical and logical expressions and their use
in (some) programming languages.

There are many reasons why ‘strings of charac-
ters’ are not sufficient for the ‘natural semantics’
of any language; but maybe they are all we have
(plus a language tag that gives an application some
starting point for manipulating the text). It seems
that everyone wants a ‘text file’ to contain just
‘something very similar to what they think writ-
ten/typeset text looks like’. But why? Because
WYSIA(ll)YG is now holy writ? Because text in
computers should be no more than a ‘virtual type-
writer’?

Of course, visual attributes can be a very impor-
tant facet of the ‘semantics of text’. The use of a
font, such as a bold face or black letter form, can
have precise (non-visual) semantics but the modern
tendency is to insist that such wholly visual informa-
tion should not be provided directly but that ‘logical
mark-up’ must be used. Despite this, there is still
a lot of ‘visual mark-up’ around as is witnessed by
the source of this paper!

In light of the above analysis, in answering this
section’s primary question we shall start a long way
from Unicode’s reductionist, synthetic approach to
text. Rather than worrying about its constituents,
let us think about what we do with it — in com-
puters, at least. Of course, in this discussion it is
important to realise that what is currently done with
text in computers is necessarily influenced heavily
by the current paradigm of text as simply ‘charac-
ter strings’. Many things that we believe could be
done in computers with natural language informa-
tion are not currently being developed in applica-
tions because the concept of ‘text’ has not yet moved
away from the idea of a ‘character string’.

We thus start from the idea that the essence of
‘text in a computer’ is ‘information content’ and its
purpose within the computer is to allow many appli-
cations to access and interpret that information. We
shall hold fast to this operational definition of ‘text’
despite the insistence of some Unicode-zealots that
such text should be little more than strings with
no inherent structure or meaning. We also realise
that it removes from the world of ‘text’ most of the
vast collections of material currently being accumu-
lated and stored digitally in vast ‘text (so-called)

databases’ and archives but, since in practice these
contain solely ‘write-only’ data, this is no great loss!

So what do we do with text in computers? The
most obvious answer, and the primary interest of
this workshop, is:

• It is written . . . and (maybe!) then read.

These are two quite complex tasks but ironically,
with current computing power, neither of these any
longer needs an abstract idea of ‘text’ as ‘standard-
ised character strings’, nor the original idea of char-
acter as a simplification of glyph.

We could now produce very sophisticated and
practical ‘reading+writing machines’ merely by
using more sophisticated direct manipulation of
huge numbers of ‘glyphs in fonts’. But these ‘Super-
Writers’ would not be at all good at doing the other
things that people are now doing, or would like
to do, with text in computers. This is because
a purely visual approach to text will almost com-
pletely ignore its information content, leaving all
interpretation of the text to the eye and brain of
the writer or reader (who may well make very dif-
ferent interpretations).

So here is a very brief list of the things that are
either regularly or experimentally done with ‘writ-
ten text’ in computers. It is written from a user’s
viewpoint rather than a technical stance, thus tasks
that are computationally very similar may appear
in different places and vice versa.

• fill out name-spaces — maybe the most ubiqui-
tous use for today’s software!

• store character-based representations of struc-
tured information: numbers, dates (classical
database field entries)

• simple matching analysis — spell-check, index,
search

• more complex analysis — morphology,
grammar-checks, readability checks, pronunci-
ation guides

• archiving and textual study — a large area

• verify the information — not only for those
maths/computing languages

• transform the information — e.g. translitera-
tion

5



• improve the information — e.g. build ontologies

• non-visual presentation of the information —
audio, tactile, signing

• produce well-designed visual presentations of
its information content

And this list is the starting point for our rethinking
of ‘What is text?’

7 Research: a first approach

In the light of this analysis we have started
a research programme to find useful abstractions
to extend and replace ‘characters’ and ‘character
strings’. These should be flexible enough to cover
all ‘natural languages’ and rich enough to capture
the ‘information content’ of the text and, finally,
they will be application-independent.

Since our current ideas are limited by those lan-
guages and scripts with which we are familiar, this
project will need input from many people: from
linguists and other experts and, more importantly,
from users of software in real languages.

Here we make a first proposal for what is needed.
It is not to be considered complete, and many
aspects will change. In particular, in another arti-
cle in the same volume [8], we focus on ‘characters’
and what exactly they might be in a more general
setting.

Text should be stored as contextualised, structured
streams: here a stream consists of a string of bytes of
known length (called the basic text), together with a
structured context, containing, among other things,
information about language, source and presenta-
tion. This context holds information as to how the
bytes are to be interpreted, in a way that can be
easily accessed by any application.

This approach is different from the current stan-
dard model, using Unicode/XML, in that the con-
text is considered to be a core part of the text; thus
modifying or removing the context changes the text !
For the moment, we will limit the structure of such
a context to being a tree, as was defined and studied
in the PhD thesis of Paul Swoboda [13], but we are
certain that this restriction to a single hierarchical
structure will not be tenable in the future.

The bytes making up the basic text could be
‘Unicode characters’ in some byte-encoding, but

we do not impose any such restriction. In addi-
tion to using many other possible character encod-
ings, the bytes could be combined, say, to produce
indexes into a suitably stored electronic English dic-
tionary, thereby avoiding difficulties such as those of
‘US speling vs. UK spelling’.

It is possible that such a system be self-similar, in
the sense that the basic text might include informa-
tion that is itself contextualised. As another exam-
ple of the flexibility of such a system, at the work-
shop Yannis Haralambous and Tereza Tranaka [2]
put forth the idea that in certain situations char-
acters may themselves be probabilistic entities,
because of uncertainties in the reading of the text.
Whatever the details of how such concepts might
be encoded, they, and many more, can be expressed
within our model.

In addition, a wide variety of relations over such
streams need to be defined. These are needed in
order to express and manipulate such structural
aspects of text as the atomicity of the compo-
nents of the basic text, equivalences and orders on
sub-streams and proximity, for intelligent searching.
The context then offers information about which
of these relations are relevant to a particular text
stream.

These contextualised, structured streams will be
transformed by applications to create new contex-
tualised, structured streams. Such a transformation
might modify some dimensions of the context, or the
basic text, or both.

This model is summarised here in tabular form:

• text: A stream of bytes of known length with
—

– a structured context
such as:

∗ ‘language tag’
∗ ‘source information’
∗ ‘presentation information’
∗ ‘reliability information’
∗ meta-information on structure

– and internal structure relations
such as:

∗ atomicity
∗ equivalences
∗ orders

6



∗ proximity

• text applications: Transformations of
contextualised, structured streams

This proposed infrastructure will provide a sound
theoretical basis for practical solutions to the com-
plex matching and deduction problems posed by
current and future ‘text applications’ and it will
support the communication between such applica-
tions of the information content of ‘text strings’,
together with useful contextual information about
these strings. Although this is but one of many
application areas, this model will provide full sup-
port for sophisticated visual presentations of the
text.

8 Conclusion: the perils of markup

It should be clear from the current proposal that
the authors do not see much utility in the so-called
‘higher-order’ markup approach to text; we call this
the ‘standard (XML) model’ for attaching linguistic
and other information to a text strings.

The main reason for eschewing this approach is
that we believe that the context must remain at all
times — throughout its life — part of the stream.
The context is an integral part of the text. It
is not simply that the context must be attached
when text is created. Whenever text is to be trans-
formed, the (possibly transformed) context must
remain attached to the new results. Thus the very
essence of what is a ‘text string’ must change from
this ‘standard model’.

Implementing such a notion of ‘stays with’
(i.e. ‘inalienable tags’)is tricky, even using ‘struc-
tured editors’. In particular, the most impor-
tant mark-up standards (SGML/XML) do not allow
‘marked-up text’ in many places where ‘natural lan-
guage text’ is needed. And of course the reason
that these editors do not work is precisely because
the mark-up standards assume that all text is ‘just
PCDATA’ and so all text strings are ‘structurally
indistinguishable’.

Finally, we wish to note that current XML-style
mark-up allows only a single tree, plus arbitrary
cross-references. But real-life textual information
is structured in ways that are both mathematically
well-understood and far richer than such a simplis-
tic model can ever encompass. The claim ‘that any

kind of internal relationship can be encoded in XML
as an IDREF’ is not relevant here since, for exam-
ple, we should be very interested to see a reason-
ably rich topological structure tractably represented
using XML markup.

Thus for this reason alone, a radically new
approach to text and other aspects of document rep-
resentation is needed and we hope that you will now
understand why we are taking ‘the path less trav-
elled’ in our quest and that they will join us in devel-
oping our model into a practical but rich environ-
ment for multi-lingual computing.

Bibliography

[1] Yannis Haralambous. Unicode et typogra-
phie : un amour impossible. Document
numérique 6(3–4):105–137, 2002.

[2] Yannis Haralambous and Tereza Tranaka. ???.
This volume.

[3] M. Herczeg, W. Prinz, H. Oberquelle (Eds).
Mensch & Computer 2002: Vom interaktiven
Werkzeug zu kooperativen Arbeits- und Lern-
welten. B. G. Teubner, 2002.

[4] Roger Kehr. xindy – A Flexible Indexing
System. In Proceedings of the EuroTeX’98,
pages 223-230, Cahiers Gutenberg, 1998.

[5] Frank Mittelbach and Chris Rowley. The pur-
suit of quality: How can automated typesetting
achieve the highest standards of craft typogra-
phy? In Electronic Publishing, pages 261–273,
Cambridge University Press, 1992.

[6] Frank Mittelbach and Chris Rowley
Application-independent representation of
text for document processing–will Unicode
suffice? In Proceedings of the 10th Unicode
Consortium Conference: Text, Fonts and
Typography, pages 233–246 (http://www.
latex-project.org/papers/unicode5.pdf),
1996.

[7] John Plaice. Private discussions during a visit
to India, 2002.

[8] John Plaice and Chris Rowley. Characters are
not simply names: On the semantics of charac-
ters. This volume.

7



[9] John Plaice and Yannis Haralambous. The
Omega Typesetting and Document Processing
System. http://omega.cse.unsw.edu.au

[10] John Plaice, Yannis Haralambous and Chris
Rowley. An extensible approach to high-quality
multilingual typesetting. In RIDE-MLIM 2003,
IEEE Computer Society Press, 2003.

[11] J. Plaice and W. W. Wadge. A new approach
to version control. IEEE-TSE 19(3):268–276,
1993.

[12] Derek J. Smith. Cryptology and
the Electric Telegraph (1853-1865).
http://www.smithsrisca.demon.co.uk/

crypto-middle.html

[13] P. Swoboda. Intensional Distributed Program-
ming. PhD Thesis, UNSW, 2003, forthcoming.

[14] Unicode Home Page.
http://www.unicode.org

[15] Extensible Markup Language (XML).
http://www.w3c.org/XML

[16] The Extensible Stylesheet Language (XSL).
http://www.w3c.org/Style/XSL

8


