
Kyoto University 21st Century COE Program

Characters are not simply names, nor documents trees

John Plaice1) and Chris Rowley2)

Abstract
In this position paper, we outline a model for documents in which the concepts of character, text and

structure are not fixed, as in the current standard XML/Unicode model.
We begin with an analysis of the current model and show how the atomist and nominalist bases for this

model can be situated within broader aspects of current theoretical computing. We then contrast these
bases with developments in practical computing, and demonstrate that an alternative model is appropriate.

Our new model moves away from the view that characters are simply names with no meaning, atoms
with no content: a text may be encoded at various levels of atomicity, as needed, and its structure may be
much more complex than a tree.

1 Introduction

In this paper, we outline our first draft of a model
for text and for documents that allows the latter to
be perceived as dynamic, evolving entities that are
sensitive to a changing environment. This model
is much more general than the current standard
model, based on Unicode [12] and XML [15], that s
documents to be fixed trees whose leaves are linear
sequences of mere names.

In our new model, we consider that the primary
purpose of using computers to work with texts is not
simply to create massive (often write-only) textual
databases, but to be able to use computers to pro-
cess these texts in innovative ways, either fully auto-
matically, or semi-automatically with manual inter-
vention. By changing the focus from storage in files
to arbitrarily complex manipulation with a com-
puter or network of computers, we can devise meth-
ods of working with text in which content and form,
copy and markup, and logical and visual markup are
not permanently kept separate.

The processing we are considering includes type-
setting of complex documents, sophisticated gram-
mar and spell-checking, and audio reproduction. We
wish to develop a common text model that will sup-
port all of these, and more. The difficulty lies, of
course, in that each of these can be arbitrarily com-
plex, in different ways.

1)School of Computer Science and Engineering
The University of New South Wales
unsw sydney nsw 2052
Australia

2)Faculty of Mathematics and Computing
Open University
1-11 Hawley Crescent
London, UK

The need for this new model is elaborated through
an analysis of the current model in Sections 2–4.
The Unicode and XML standards have been jointly
designed so that documents can be “understood”
without making any reference to any context.
Although XML was first presented some years ago
with the announcements that finally we would be
able to insert semantics in our documents, in prac-
tice only syntactic issues have been clarified.

The problems are not merely technical, in which
a patch here or there might rectify the situation.
Rather, both Unicode and XML have been designed
with philosophical — ideological? — preconceptions
of what a document should or must be, with signif-
icant repercussions on text processing.

By ignoring the context, every aspect of a docu-
ment becomes an island, an isolated entity with no
links or ties with the other isolated entities. This
problem applies at all levels, from the entire docu-
ment itself right down to the individual character in
a text stream. This separateness is not an accident,
it is the conscious basis for both standards.

It is ironic that as these standards become ubiq-
uitous, even our smallest devices, such as mobile
phones, are becoming powerful computers capable
of sophisticated processing, Any document can be
continually processed and reprocessed, on-demand,
as needs change, and the document is viewed, pre-
sented, or analyzed in a different context.

Our new model, outlined in Sections 5–7, general-
izes the current model through the systematic incor-
poration of context and the use of more flexible data
structures.

2 Unicode/XML as Standard Model

We present the key principles of the two stan-
dards, starting with the XML design goals [15, §1.1]:

• XML shall be straightforwardly usable over the
Internet.

• XML shall support a wide variety of applica-
tions.

• XML shall be compatible with SGML.

• It shall be easy to write programs which process
XML documents.

• The number of optional features in XML is to
be kept to the absolute minimum, ideally zero.

• XML documents should be human-legible and
reasonably clear.

• The XML design should be prepared quickly.

• The design of XML shall be formal and concise.

• XML documents shall be easy to create.

• Terseness in XML markup is of minimal impor-
tance.

To summarize, it was important for the XML
designers to have a quickly prepared standard for
documents that are easy to parse and to create, with
no worries about efficiency, utility or compactness.
Thus no special focus was given to text.

As for the documents themselves, their structure
is given below [15, §2]:

Each XML document has both a logical
and a physical structure. Physically, the
document is composed of units called enti-
ties. An entity may refer to other entities
to cause their inclusion in the document.
A document begins in a “root” or docu-
ment entity. Logically, the document is
composed of declarations, elements, com-
ments, character references, and process-
ing instructions, all of which are indicated
in the document by explicit markup. The
logical and physical structures must nest
properly. . . .

Because of the nesting of logical and physical struc-
tures, an XML document is a tree with a single root.

For text, the XML standard adds [15, §2.1–2]:

This specification, together with associ-
ated standards (Unicode and ISO/IEC
10646 for characters, Internet RFC 1766
for language identification tags, ISO 639
for language name codes, and ISO 3166
for country name codes), provides all the
information necessary to understand XML
Version 1.0 and construct computer pro-
grams to process it. . . .

Definition: A parsed entity contains text,
a sequence of characters, which may repre-
sent markup or character data.

Definition: A character is an atomic unit
of text as specified by ISO/IEC 10646. . . .

Legal characters are tab, carriage return,
line feed, and the legal characters of Uni-
code and ISO/IEC 10646.

The design principles for Unicode are given
below [12, pp.15–6]:

The Unicode Standard draws a distinction
between characters and glyphs. Charac-
ters are the abstract representations of the
smallest components of written language
that have semantic value. They represent
primarily, but not exclusively, the letters,
punctuation, and other signs that consti-
tute natural language text and technical
notation. Characters are represented by
code points that reside only in a memory
representation, as strings in memory, or on
disk. The Unicode Standard deals only
with character codes.

Glyphs represent the shapes that char-
acters can have when they are rendered
or displayed. In contrast to characters,
glyphs appear on the screen or paper as
particular representations of one or more
characters. A repertoire of glyphs makes
up a font. Glyph shape and methods of
identifying and selecting glyphs are the
responsibility of individual font vendors
and of appropriate standards and are not
part of the Unicode Standard.

10

Various relationships may exist between
character and glyph: a single glyph may
correspond to a single character, or to a
number of characters, or multiple glyphs
may result in a single character.

Therefore, if we put together the text principles
from XML and the Unicode principles, we read that
the XML standard essentially hands all responsibil-
ity for text to Unicode; but Unicode deals only with
character codes, with only a few ad hoc extensions
to specify properties of these characters. It seems
that there is as yet no standard to deal with text as
anything more than a sequence of bytes, notwith-
standing the hype.

3 Atomism: Emptying the Context

The whole XML exercise, and here we refer not
simply to the overtly stated principles, but also to
the actual practice, is that a document is created to
be stand-alone. It might refer to external resources,
using URIs, but the document itself has fixed struc-
ture and content. A document designer must ensure
that a document includes all the information neces-
sary for its use, regardless of the context in which it
might be used. The document is self-contained.

The philosophical principle behind this approach
is called atomism. The atomist view of the uni-
verse, commonly associated with the names Leucip-
pus and Democritus (5th century B.C.E.) is that
the cosmos is composed of indivisible atoms, mov-
ing through empty space. The opposite philosophical
standpoint, called plenism, assumes that there is no
empty space and the atoms, if they exist, are not
indivisible.

This debate is best known in physics with respect
to the nature of light. The atomist view, upheld
by Newton, Einstein, Schrödinger, maintains that
light is made up of particles. Throughout most of
the twentieth century, this has been the standard
model, where the particles are called photons. The
plenist view is that there is a luminiferous aether
and that light is a wave, a vibration of the aether.
It was the standard model in the nineteenth century,
upheld by Huyghens, Fresnel, Maxwell and Planck.

In computing, the atomist view corresponds to
object-oriented programming, while plenism corre-
sponds to intensional programming, in which a pro-

gram is assumed to be adapt to an evolving multi-
dimensional context [7].

With respect to documents, the atomist point of
view is not new. It has been the dominant posi-
tion since the development of the printing press
under Gutenberg and the subsequent production of
books sold as commodities. Peter Ramus (1515–
1572) played a significant role in developing the
view that a book should be self-contained, defin-
ing the basic precepts at the beginning, followed
by the text and the subsequent conclusions. Both
Marshall McLuhan and Walter Ong have written
at length about the transformation from the age of
manuscripts to the age of books.

That the atomist point of view prevailed with
the development of printed books was perhaps an
inevitable process. Certainly this is the point of view
put forward by McLuhan in his Gutenberg Galaxy.
If a book is passed from one reader to the next, it is
the same book each time it is read (unless of course
someone annotates it or tears the pages).

However, for a digital text, the process is different,
because it is actively rendered every time that it is
to be viewed. Since this is the case, one can possibly
have the choice of having it rendered differently each
time that it is to be read. In other words, we can
imagine having the document presented differently
as the context changes.

The work initiated by William Wadge in inten-
sional documents [13] begins with this idea and
goes much further. Here the very structure of the
document can become context-sensitive. This idea
has been applied experimentally by Manolis Ger-
gatsoulis and Panos Rondogiannis to XML to pro-
duce Multidimensional XML [10]. More recently,
the authors have contributed to adding these ideas
to the Omega Typesetting System [6].

4 Nominalism: The Focus on Syntax

Related to atomism is a philosophical doctrine
called nominalism, in which universals are rejected,
leaving only names. The Unicode standard is clearly
nominalist, as it states that “The Unicode Standard
deals only with character codes”, which are identi-
fied by specific names such as latin capital let-

ter g or the even less useful cjk unified ideo-

graph 4e32. Although the Unicode book does give
substantial information about the history of and

11

relationships between many of these characters, this
information is not part of the standard.

The Unicode approach has its utility, giving us
a single standard in which one can type most of
the world’s characters. However, the nominalist
approach freezes the world’s writing systems at a
particular point in time from a single vantage point.

As Yannis Haralambous [5], among others, has
been pointing out, what exactly constitutes a glyph
or a character is not a clear cut issue, and may
well vary through time, language and culture, i.e.,
even characters may be context-dependent. And in
cultures using Chinese characters, the actual set of
characters is continually growing, as old characters
are discovered and new ones are created.

This focus on names is consistent with the obses-
sion of much of theoretical computer science with
what are called syntactic theories, in which all of
computing is limited to “following pointers”. As an
example, Robin Milner, Turing Award winner and
inventor of the π-calculus, expresses himself in an
interview with Martin Berger [2]:

Berger: The concept of names and nam-
ing is very important in your work. When
did it occur to you that this is a fundamen-
tal notion in computing? That you have
these points where you can interact, that
you can hide. . . ?

Milner: . . . I think it was when we found
out that you could encode data as pro-
cesses with name passing. . . . you can get
all the data, not by means of other kinds
of objects, but as processes. And the way
you access the data is via interaction and
the interaction is via names.

The implications of such statements are that some
of the most sophisticated programming found any-
where, such as the kernel of an operating system,
where one must continually deal with race condi-
tions, is mere detail, since it simply becomes inter-
action via names.

Even more extreme statements can be found in
the world of mathematics, as exemplified by Martin
Gardner, the longtime mathematics editor for Sci-
entific American [4]:

Mathematics is not only real, but it is the
only reality. That is that entire universe

is made of matter, obviously. And mat-
ter is made of particles. It’s made of elec-
trons and neutrons and protons. So the
entire universe is made out of particles.
Now what are the particles made out of?
They’re not made out of anything. The
only thing you can say about the reality
of an electron is to cite its mathematical
properties. So there’s a sense in which
matter has completely dissolved and what
is left is just a mathematical structure.

Even the material nature of the universe, with its
limitless complexity, can be put into question!

The problem lies not in the use of abstractions,
nor in the use of names, but in the supposition
that abstractions are the only reality or are simple
“zoom-outs” from more complex interactions hap-
pening at a lower level. Rather, they should be
viewed as abbreviations, useful in some but not nec-
essarily all situations.

5 Computers are for Computing

Implicit to all of these systems is the idea that
computers do not actually do anything: they are
just used to shuffle things around. The astonishing
processing power of even the smallest computers of
today seems to exist only to serve documents prepro-
cessed elsewhere and downloaded from the network.

Yet, first-year courses in programming all focus
on iteration and recursion, each of which is used to
repeatedly manipulate a data structure where cer-
tain parameters have changed values.

It is this point that we consider to be the most
important when trying to develop a new model for
text. We should be concerned not simply about the
format for files, but, more importantly, about the
kinds of data structures and the kinds of manipula-
tions that we wish to undertake on these data struc-
tures. As Niklaus Wirth wrote almost 20 years ago.
“Algorithms + Data Structures = Programs” [14].

A new model for text should assume that a com-
puterized text is a multi-faceted, dynamic data
structure in which, through automatic processing
and manual intervention, including editing, it can be
transformed many times over into something new,
annotated, or added to, without having to force
everything into a fixed, atomized tree.

12

6 Incorporating the Context

Since this is a position paper, we will only out-
line the proposed model. In particular, we will not
focus on syntactic issues, and will follow the advice
given by Ashcroft and Wadge in [1] and give the pre-
scriptive semantics that we wish the new model to
follow. Exact operational and syntactic issues will
be dealt with in future papers.

The simplified version of the model we are pre-
senting in this section is a direct generalization of
the existing XML/Unicode model. The important
extra ingredient is that context has been incorpo-
rated at all levels. In other words, we can assume
that we are still dealing with structures resembling
trees whose leaves are sequences of “characters”.

Thus we begin with the idea of a multidimensional
context (see [7]). We then consider a document to
be an intension, i.e., a mapping from contexts to
extensions; for now, these extensions closely resem-
ble current XML/Unicode documents. This prac-
tice, used in intensional programming, has its ori-
gins in the logical work of Carnap [3]. In logic, these
contexts are called possible worlds and they corre-
spond to a complete description of a system. In our
model, the idea is that each distinct context specifies
a complete document tree.

Since the set of possible contexts is unboundedly
large, all of these possible document trees cannot be
stored separately. Instead, it is the intension that is
encoded, rather than the separate extensions. Thus
this intension must, for each entity, encode how the
extension of that entity varies with the context.

In practice this encoding of an intension would
be done in either of two ways, or a mixture of the
two. First, the extension-specification of an entity
can vary parametrically according to the values of
one or more dimensions of the context; this is the
simple case. Second, a finite collection of possible
specifications can be given and, for each specifica-
tion, information is added to determine that the sub-
set of contexts for which that specification should
be used. We call each of these separate extension-
specifications a version of that entity.

This approach has already been demonstrated
to be useful in the development of Multidimen-
sional XML. However, here we go further, in that
we consider that the context affects not just the
structure of a document (the XML part), but also

the text itself (the “Unicode characters” and their
interpretation). Already, in our other article in this
volume [9], we have described the utility of this idea.

Our initial model of text is a still as a sequence
of “characters”, but now the context determines,
for example, their atomicity so such aspects are
now variable. For example, an English text can
be encoded as Latin letters, or as English words —
avoiding problems of national spelling variants — or
some other structure encoding grammatical compo-
nents. To keep track of what is being encoded, the
text must also be part of the intensional paradigm.

The model goes even further, because even the
properties of individual “characters” can depend
on contextual information of arbitrary complexity.
Such extensions of the text model allow the docu-
ment itself to keep track of subtleties of character
and glyph variants when visual appearance is cru-
cial, as in encoding historical texts.

¿From a technical point of view, we assume that
this part of the model will not be difficult to imple-
ment, as we will be able to take advantage of the
infrastructure created by Paul Swoboda [11].

Note that the context for a document can be
changed by many factors, including the actions of
applications, such as formatters. The context can
therefore change during the processing of a doc-
ument and this is where much of the computa-
tional flexibility and power of this model will become
apparent.

7 Moving Beyond the Tree

In this section we extend the model of document
structure into something very different from that of
XML. In this model, multidimensionality is crucial
not just for the context, but for the document struc-
ture itself and all the associated data structures.

Our fundamental observation is that all but the
most trivial documents really consist of multiple
streams; these are encoded linearly in existing sys-
tems only for historical reasons. For example, a foot-
note does not “belong” to the text in which it is
placed and it is certainly not a subset or substruc-
ture of that text. It is only for reasons of conve-
nience when typing that it the footnote text may
appear at a particular position in the source file;
as far as the document is concerned, a footnote is
a separate stream, together with a synchronization

13

structure linking it to a specific position in the main
text. This notion of multiple synchronized struc-
tures is natural for encoding a wide range of doc-
uments, such as commentaries, and it is amenable
to building document structures in which one can
annotate documents at will.

It is this intuition that we wish to retain for
our general model: a document should consist of
such synchronized parallel multidimensional struc-
tures and thus cannot be understood from a sim-
plistic representation as branches of a tree.

But our model goes even further than this vision,
because we observe further that the natural way to
represent many elements of a complex document is
based on the multidimensional array, as appears in
spreadsheets. This structure allows us to encode
tables of arbitrary complexity, as well as create an
infrastructure for editing and formatting without
neglecting their fundamental nature or their rela-
tionships to the rest of the document.

The full model also incorporates nested and
ordered structures (i.e. the classical tree structures)
but integrates them closely with the multidimen-
sional arrays and the synchronized parallel struc-
tures. The types of these structures are very general
but are definitely not arbitrary, nor are they compu-
tationally intractable. Mixed hierarchical and tabu-
lar structures (not arbitrary, but very well struc-
tured) are also becoming more common in data-
based applications. A simple example: each of the
rows in a table is decomposed into nested sub-rows
or even nested sub-tables.

To summarize, such structures are a long way
from the classical structures of computing, such as
the relational database and the tree, but they are
also far from being ‘arbitrary relations’. They are
needed because they appear quite naturally in doc-
uments, particularly as follows.

• In generalized tabular data, which is often
naturally multi-dimensional with no preferred
dimension.

• In documents with multiple, unrelated hierar-
chies.

• As multiple streams with ‘synchronisation
points’.

8 The Utility of Our Model

In this section we briefly describe a number of
the many tasks in document processing that will
take advantage of the new model. We are of course
aware that good, innovative systems that are based
on ideas developed to solve an apparently special-
ized problem often turn out to be productive in
more main-stream applications. Thus it is likely
that when our model is implemented and is shown
to be well suited to text processing, then it will be
equally useful for many other applications.

We begin with some simple examples, at the word
or phrase level:

• Japanese text is known to need pronunciation
information readily available. This should be
integral to the text.

• For teaching applications this is probably even
more important for English (which also has
multiple pronunciations).

• Asynchronous textual communication needs a
lot of enrichment: the equivalent of the non-
textual bits of synchronous communication.

• ‘Information matching’ is not ‘string matching’
as the former needs information about: atom-
icity, equivalences and order relations on sub-
strings and, for non-exact matching, topologi-
cal relations on the ‘information content’ of the
text. A very simple example: comparing a US
text and a UK text.

• Many commonly occurring text strings have
a ‘meaning’ that is more formal than that
derived from natural language analysis. Some
more obvious examples are times, dates and
other measurements; less obvious are addresses,
and names of people, places, etc. The formal
structure and abstract meaning of these often
needs to be explicitly encoded as part of the
text. Neither of the two extreme current meth-
ods of doing this is sufficient: these are addi-
tional mark-up or run-time matching to regular
expressions.

• All useful text could usefully be linked to dic-
tionary or glossary entries; in some cases this

14

should be extended, for example, to concor-
dance data and multiple dictionaries (e.g. learn-
ers’, etymological, historical, technical).

• In specialized texts, such as teaching texts,
engineering specifications or legal documents,
words and phrases have precise meanings and
relationships that need to be encoded as part
of the text.

Even staying within visual presentation of text, a
dynamic approach to atomicity and equivalences of
substrings are needed to support the following:

• Glyph selection and positioning (typesetting
words and punctuation).

• Relative positioning of glyphs (white-space,
decorations, punctuation, italic corrections
etc).

• Line- and page-breaking.

• Generated text and reuse of text in different
contexts.

Any single extra facet of text, such as many of
those above, probably can be modelled with an ad
hoc extension of the current model: ‘Unicode stream
+ XML structure + IDREFs’. But here we are try-
ing to develop a common model to support at least
all aspects of the automation of the following activ-
ities: production and typesetting of complex doc-
uments, sophisticated grammar and spell-checking,
database publishing and audio reproduction. Whilst
none of these need be individually complex, any of
them may be.

Moreover, taking a glimpse into the future of doc-
uments, all of these textual and structural enrich-
ments need a fortiori to be present in the universe
of dynamic, interactive and multiply authored doc-
uments that may one day fulfil the vision of the orig-
inal web philosophers.

9 Conclusion

The model we have presented, in which context-
sensitivity is paramount, and in which parallel and
multidimensional data structures are the norm, with
multiple levels of atomicity for the “characters”, is
in our opinion a minimum for working with complex
documents with text.

Key to the development of the model was the real-
ization that the Unicode standard freezes what writ-
ing is to look like, just at a time when writing is
no longer restricted to being fixed. When workers
were chiseling texts into stone, they were not wor-
ried about subsequent automatic processing of their
words since the marks on the tablets, and probably
the information they contained, were understood to
be eternal.

Eschewing nominalism, and reasserting the inter-
connectedness of our tasks, offers us many new vis-
tas. We can consider, for example, that editing is a
special kind of formatting, in which certain layout
aspects are simplified. It is by making analyses of
this kind that we will be able to transform this pro-
posed general model into one that is implemented,
and used, for a broad variety of tasks involving text.

Bibliography

[1] E. A. Ashcroft and W. W. Wadge. R/ for
Semantics. ACM TOPLAS 4(2):283–294,
1982.

[2] Martin Berger.
An Interview with Robin Milner.
http://nick.dcs.qmul.ac.uk/~martinb/

interviews/milner/

[3] Rudolf Carnap. Meaning and Necessity.
University of Chicago Press. Enlarged Edition,
1956.

[4] Martin Gardner. Gardner on Gardner: JPBM
Communications Award Presentation. Focus –
The Newsletter of the Mathematical
Association of America 14(6), December 1994.

[5] Yannis Haralambous. Unicode et typographie:
un amour impossible. Document numérique
6(3–4):105–137, 2002.

[6] John Plaice and Yannis Haralambous. The
Omega Typesetting and Document Processing
System. http://omega.cse.unsw.edu.au

[7] John Plaice and Joey Paquet. An Introduction
to Intensional Programming. In Intensional
Programming I, World-Scientific, Singapore,
1997.

15

[8] John Plaice and W. W. Wadge. A New
Approach to Version Control. IEEE-TSE
19(3):268–276, 1993.

[9] Chris Rowley and John Plaice. New directions
in document formatting: What is text? This
volume.

[10] Yannis Stavrakas, Manolis Gergatsoulis and
Panos Rondogiannis. Multidimensional XML.
In Distributed Communities on the Web,
LNCS 1830:100–109, Springer, 2000.

[11] Paul Swoboda. A Formalization and
Implementation of Distributed Intensional
Programming. PhD Thesis, The University of
New South Wales, 2003.

[12] The Unicode Consortium, et al. The Unicode
Standard, Version 4.0. Addison-Wesley, 2003.

[13] William W. Wadge, Gord Brown, Monica M.
C. Schraefel, Taner Yildirim. Intensional
HTML. In Principles of Digital Document
Processing, LNCS 1481:128–139, Springer,
1998.

[14] Niklaus Wirth. Algorithms + Data Structures
= Programs. Prentice-Hall, 1985.

[15] Tim Bray, Jean Paoli, C. M.
Sperberg-McQueen and Eve Maler, editors.
Extensible Markup Language (XML) 1.0
(Second Edition), 2000.
http://www.w3.org/TR/REC-xml

16

