
Kyoto University 21st Century COE Program

Ω/CHISE:

A Typesetting Framework based on the Character Infor-

mation Service Environment

Izumi Miyazaki and Toru Tomabechi

Abstract
The open-set scheme proposed by CHISE can (at least theoretically) handle an infinite number of

characters and should come to a rescue for those who have felt the inconvenience of the CCS-based
text-processing. As a part of the CHISE Project and as a sample application of this environment to the
real-world computing, the present authors have been undertaking the development of the Ω/CHISE system
which combines Ω’s typesetting capability and CHISE’s power in basic text-processing. This paper will
describe how Ω/CHISE’s works and how it is implemented.

1 Introduction

The CHISE (CHaracter Information Service En-
vironment) project initiated by Tomohiko Morioka
aims at a radical reconstruction of text-processing
environment. Treating a character in terms of “fea-
ture bandle” rather than as a specific code point
(and its associated glyph) in a coded character set
(CCS), CHISE provides a powerful framework that
overcomes the limitation imposed by the traditional
model ([1]. See also the article by S. Moro in
this volume). Though the discussion within the
CHISE circle often tends to get rather abstract
(or “philosophical,” whatever the term may mean),
the present paper will advisedly leave out such a
subject—interesting as it might be—and will try to
be as down-to-earth as possible. It’s all about how
we obtain one of the possible practical results of
CHISE text-processing, namely the typeset/printed
output: nothing more, nothing less.

* * *

Just as in any other area of text-processing, ex-
isting typesetting systems are fundametally bound
up with the traditional CCS scheme (including
Unicode/ISO-10646) and are designed to handle
characters only within an artificially imposed limita-
tion. The problem of this traditional model become
especially apparent when processing texts written
in CJK languages where users quite often encounter
with the characters that cannot be properly encoded
due to their absence in the existing character sets
and have to have recourse to some idiosyncratic so-
lutions, such as the so-called Gaiji. Even today,

the situation cannot be said to be very different
from that of the bad old days of Gaiji prolifera-
tion. As Unicode’s character inventory continues to
grow larger, many people come to hope that one day
we will be able to cover all known characters. This
may be partially true, but will not solve the intrinsic
problem of the CCS model.

The open-set scheme proposed by CHISE can
(at least theoretically) handle an infinite number of
characters and should come to a rescue for those who
have felt the inconvenience of the CCS-based text-
processing. As a part of the CHISE Project and
as a sample application of this environment to the
real-world computing, the present authors have been
undertaking the development of the Ω/CHISE sys-
tem which combines Ω’s typesetting capability and
CHISE’s power in basic text-processing. In the fol-
lowing, this paper will describe how Ω/CHISE works
and how it is implemented.

2 Why Ω?

Ω is an extension to Donald E. Knuth’s TEX type-
setting system which is being developed by John
Plaice and Yannis Haralambous.1 While inheriting
the precision and the flexible typesetting capabil-
ity of TEX, Ω realizes additional capabilities of text-
processing, which make this typesetting engine quite
suitable for our purpose. To our project, the follow-
ing features are especially relevant:

1http://omega.cse.unsw.edu.au:8080/index.html (As
of writing of this paper, the web site seems to be down.)
Ω is a software still under development and, unfortunately
but inevitably, there is no definite documentation of its
functionality.

Large code space: Original TEX can handle only
256 code points per font and local CJK exten-
tions, such as pTEX, typically extend the code
space to 94×94 grid (=8836 cells). The current
implementation of Ω has full 16bit code space2

and thus capable to handle 65536 characters in
a single font.

External ΩTP: ΩTP stands for “Ω translation
process,” which is of two types, viz. “internal”
and “external.” The both types of ΩTPs are
used for pre- or post-processing of input/output
stream to/from the so-called “stomach” of Ω
typesetting engine. While the internal ΩTP is
implemented as a special built-in programming
language in Ω, the external ΩTP can be any
type of STDIN-STDOUT filter written in C,
Perl, Ruby, Python, or whatever. The exter-
nal ΩTP facility allows the user to extend the
capability Ω typesetting engine and makes it
suitable for complex tasks.

As we are dealing with an open-set system, the ab-
solute number of characters per font is not really
essential, however large it may be. However, from
the practical point of view, it is much easier to have
a small number of large fonts than to have to deal
with a huge bunch of small ones.3 The 16bit code
space of Ω meets this requirement at least at the
current time.

In order to draw forth the potentiality of CHISE in
the domain of typesetting, the external ΩTP plays
important roles. To make use of character infor-
mation which characterize CHISE, a flexible inter-
face between CHISE database and the typesetting
engine is necessary. Furthermore, Ω/CHISE’s most
important feature— on-the-fly generation of missing
glyphs using KAGE—involoves a network transac-
tion. Thanks to the external ΩTP facility, these two
features can be easily implemented.

And finally let us add this: we shall not forget
that the CHISE project is an Open Source project.

2It is planned that the code space will be expanded to
32bit in a future version. Though Ω is often described as
using Unicode internally, this is rather misleading. Ω indeed
has a 16bit code space which allows to use BMP in a single
font file, but it does not follow from this that Ω is bound up
with some specific CCS such as Unicode.

3As we will explain below, the actual implementation of
Ω/CHISE does use a rather large number of sub-fonts. How-
ever, those sub-fonts are bundled together in larger fonts via
virtual font facility and hidden from the ordinary user.

Ω, as its predecessor TEX, is Open Source: for our
purpose, it is the best available typesetting engine.

3 How it works

Now, let us explain how Ω/CHISE works. First,
we explain the outline of typesetting process in this
section, and the detail of each components will be
treated in the next.

As shown in Figure 1, Ω/CHISE system consists
of several components. The core of the system is
a macro package named chise.sty from which two
external ΩTP are called.

The entire process is roughly divided into three
phases, 1. typesetting, 2. glyph generation and
3.DVI to PDF conversion, as described below:

Typesetting While reading in the source file, the
first ΩTP is called and scans CJK characters and
IDS (Ideographic Description Sequence). Each time
a CJK character or IDS is encountered with, the
ΩTP sends query to the character database rele-
vant in the current font environment in order to
see whether the character or IDS in question has
a corresponding glyph in the target font. The next
behavior of the ΩTP is determined according to the
query result, which can be classified as follows:

1. Source: CJK character

(a) Query result: YES

(b) Query result: NO

2. Source: IDS

(a) Query result: YES

(b) Query result: NO

In case 1 (a), ΩTP leaves the input character as
is. In case 2 (a), the input IDS is replaced with
the corresponding character. In these two cases, the
character is typeset using the glyph in the target
font which is determined by the current font envi-
ronment.

In case 1 (b), ΩTP asks the database for the IDS
corresponding with the character and replaces the
character in the source file with a macro format
which specifies the font and code position to be used
for typesetting the character. In case 2 (b), the IDS
is replaced with the macro code. In the both cases,

78

the IDS in question is written out in a auxiliary file
which will be used later for on-the-fly glyph gener-
ation.

Let us review the process described above in a
more concrete manner with the example shown in
Figure 2:

• The first 知 character, which is in the grobal
font environment (specified as package option
to chise.sty) of the source file, is typeset us-
ing the glyph in a GB font. On the other hand,
the second 知 character is enclosed within a lo-
cal font environment (JIS in this example) and
typeset using the glyph in a JIS font. [Case 1
(a)]

• Then, the IDS consisting of IDC U-2ff0, 矢 and
口 characters is replaced with a single character
知 and typeset using the glyph in JIS font as in
the previous example. [Case 2 (a)]

• However, the next IDS, U-2ff1, U-2ff0,口,口,U-
2ff0, 口 and口, (usually) has no corresponding
character in the target font (JIS). In this case,
the IDS is written out to an auxiliary file and
replaced in the input stream with a macro com-
mand. The character is typeset using the glyph
generated on-the-fly. [Case 2 (b)]

• And the last character, which is in a simpli-
fied Chinese form but enclosed in JIS environ-
ment, cannot be found in the target font. In
this case, the ΩTP tries to get the correspond-
ing IDS from the database and writes it out to
the auxiliary file. The character is typeset in
the same manner as in the previous case. [Case
1 (b)]

Apart from the character/IDS handling, the type-
setting process of the document goes normally just
in the same way as with the ordinary Ω/TEX and
generates a DVI file.

Glyph generation Once the typesetting pro-
cess is finished, the second ΩTP is called as an
\end{document} hook. The ΩTP reads in the aux-
iliary file written out during the typesetting pro-
cess. According to the IDS information of the miss-
ing glyphs, the ΩTP sends glyph requests to KAGE
([2]. See also the article by K. Kamichi in this vol-
ume) over the http communication. Then the ΩTP

converts glyph outlines in SVG format returned
by KAGE into PostScript Type 1 human-readable
codes and, with the help of two external programs
(t1asm and pfaedit) creates Type 1 font(s) in PFB
format.

DVI to PDF conversion Finally, the created
fonts are used in the process of DVI→PDF conver-
sion by dvipdfmx,4 and included in the resulting
PDF.

4 Implementation

Now let us see how each component is imple-
mented.

4.1 Macro package: chise.sty

This is the core component of Ω/CHISE system.
It consists of a series of macro definitions that con-
trols the behavior of the two external ΩTPs which
will be explained later.
chise.sty accepts the following package options:

• File coding system:
This is a required option used for specifying
the coding system of input file. Currently,
the macro package accepts four UTF-8 variants
used in XEmacs/CHISE.

– utf8mcs

– utf8cns

– utf8gb

– utf8ks

• Global font environment:
This option is used for specifying the doc-
ument’s default font environment. Option’s
names must self-explanatory.

– gbfont

– cnsfont

– jisfont

– ksfont

4A CJK extention to Mark A. Wicks’ dvipdfm, which
is capable of handling DVI files generated by Ω. See
http://project.ktug.or.kr/dvipdfmx/

79

Figure 1: How Ω/CHISE works

Figure 2: Sample input file

80

• KAGE use:
If this option is given, Ω/CHISE interacts with
KAGE server for glyph generation. Omit this
if you are processing a draft document and do
not want to generate glyphs.

– kage

And chise.sty defines the following macro com-
mands available to users:

• Font changing commands:
Locally changes the CJK font environment.
Self-explanatory.

– \jisfont{}

– \gbfont{}

– \cnsfont{}

– \ksfont{}

– \multifont{} — Try to use all available
CJK fonts whatever the global font envi-
ronment may be.

• Entity reference:

– \ER{}

For example, \ER{U-4e00} stands for
Unicode/ISO-10646’s code point 4e00 and
prints the character “一”. This command
can also be used for expressing IDC, as in
\ER{U-2ff0}矢口

• IDC printing commands:
Prints IDC verbatim.

– \idcltr

U-2ff0
IDEOGRAPHIC DECSRIPTION
CHARACTER LEFT TO RIGHT

– \idcatb

U-2ff1
IDEOGRAPHIC DECSRIPTION
CHARACTER ABOVE TO BELOW

– \idcltmr

U-2ff2
IDEOGRAPHIC DECSRIPTION
CHARACTER LEFT TO MIDDLE AND
RIGHT

– \idcatmb

U-2ff3
IDEOGRAPHIC DECSRIPTION
CHARACTER ABOVE TO MIDDLE
AND BELOW

– \idcfs

U-2ff4
IDEOGRAPHIC DECSRIPTION
CHARACTER FULL SURROUND

– \idcsfa

U-2ff5
IDEOGRAPHIC DECSRIPTION
CHARACTER SURROUND FROM
ABOVE

– \idcsfb

U-2ff6
IDEOGRAPHIC DECSRIPTION
CHARACTER SURROUND FROM BE-
LOW

– \idcsfl

U-2ff7
IDEOGRAPHIC DECSRIPTION
CHARACTER SURROUND FROM
LEFT

– \idcsful

U-2ff8
IDEOGRAPHIC DECSRIPTION
CHARACTER SURROUND FROM UP-
PER LEFT

– \idcsfur

U-2ff9
IDEOGRAPHIC DECSRIPTION
CHARACTER SURROUND FROM UP-
PER RIGHT

– \idcsfll

U-2ffa
IDEOGRAPHIC DECSRIPTION
CHARACTER SURROUND FROM
LOWER LEFT

– \idcol

U-2ffb
IDEOGRAPHIC DECSRIPTION
CHARACTER OVERLAID

In addition to the font changing macros described
above, the font environment can also be changed
locally by \begin{}...\end{} style command:

81

• \begin{JISfont}

...
\end{JISfont}

• \begin{GBfont}

...
\end{GBfont}

• \begin{CNSfont}

...
\end{CNSfont}

• \begin{KSfont}

...
\end{KSfont}

• \begin{Multifont}

...
\end{Multifont}

4.2 ΩTP (1)—CJK character/IDS parser

The first ΩTP is a Perl script, named “inCHISE”,
which scans and transforms the input stream. As
has already been explained, the main task of this
script is to parse CJK characters and IDS and to
query databases.

This ΩTP has to change its behavior according
to the coding system of the input file and the font
environment in which the current part of document
is being processed. With stand-alone scripts, such
behavior changes can be easily effectuated by simply
passing relevant options to the script. However, the
current implementation of Ω does not allow pass-
ing options from within the style file to the external
ΩTPs and we are forced to adopt a less than smart
way of work-around by creating symbolic links from
the script to the following file names:

• Utf8cnsToUniCNS

• Utf8cnsToUniGB

• Utf8cnsToUniJIS

• Utf8cnsToUniKS

• Utf8cnsToUniMulti

• Utf8gbToUniCNS

• Utf8gbToUniGB

• Utf8gbToUniJIS

• Utf8gbToUniKS

• Utf8gbToUniMulti

• Utf8jisToUniCNS

• Utf8jisToUniGB

• Utf8jisToUniJIS

• Utf8jisToUniKS

• Utf8jisToUniMulti

• Utf8ksToUniCNS

• Utf8ksToUniGB

• Utf8ksToUniJIS

• Utf8ksToUniKS

• Utf8ksToUniMulti

• Utf8mcsToUniCNS

• Utf8mcsToUniGB

• Utf8mcsToUniJIS

• Utf8mcsToUniKS

• Utf8mcsToUniMulti

The first part of each file name represents the cod-
ing system of the input file and the last part the
target font (for example, Utf8cnsToJIS: input file
is encoded in utf8-cns—specified in package option
to chise.sty; use JIS font to typeset characters—
specified as global or local font environment in the
source file). In the actual process, the script is called
by one of these names: that name is passed to the
script via $argv[0] which is then used to determine
what the script’s behavior should be.

In the example in Figure 2, the default file name
of the ΩTP is Utf8mcsToGB as the two package op-
tions utf8mcs and gbfont are given. When the first
知 character, which is to be typeset using a GB font,
is processed, this ΩTP queries the database created
from Adobe CMAP for GB character set in order to
see whether 知 character is available in the GB font
installed in the system. Then, when the second 知
enclosed in JIS font environment is processed, the
ΩTP is called under the name Utf8mcsToJIS. The
ΩTP now queries another database which is based
on CMAP for JIS.

82

4.3 ΩTP (2)—KAGE interface

The second ΩTP, which is called from
chise.sty at the end of typesetting process
as an \end{document} hook, has two tasks. The
first of the two is to interact with KAGE server
over HTTP communication, the second to generate
PostScript Type 1 fonts.

When called, the ΩTP tries to read in the auxil-
iary file created by the first ΩTP during the type-
setting session. The auxiliary file contains a list of
IDSs for characters which are absent from the exisit-
ing character sets and, therefore, cannot be typeset
using pre-existing fonts. The ΩTP first converts the
raw IDS encoded in UTF-8 into the URI form ac-
ceptable for KAGE. For example, the second IDS in
Figure 2, U-2ff1 U-2ff0口口U-2ff0口口, is converted
into

u2ff1u2ff0u53e3u53e3u2ff0u53e3u53e3.5

Then, appended to HTTP prefix, the above query
string is sent to the server on which KAGE is run-
ning.

The second task of this ΩTP is to create
PostScript Type 1 fonts. If KAGE successfully cre-
ates and returns the requested glyph, the returned
data, which is a glyph outline in SVG format, is
converted into Type 1 charstring and stored in an
array. The glyph outline is also cached in an ex-
ternal database on the local system in order for the
process to be speeded up when the same glyph is
requested next time.

Once all the necessary glyphs are obtained, the
ΩTP bandles those glyphs into Type 1 human-
readable fonts. These fonts are passed through an
external helper program, t1asm,6 to be compiled
into PFB format. Further, the resulting PFB fonts
are “cleaned up” by pfaedit7 which is run in the
script mode. This latter process eliminates redun-
dant control points and adds hints to the glyphs.

CJK typsetting usually requires two kinds of
glyph designs, namely, Mincho/Myongjo/Song face

5This form of query string is compatible with KAGE 0.3
and now became obsolete. The implementation of the ΩTP
will shortly be adapted to a new version of KAGE.

6Included in t1utils package.
See http://www.lcdf.org/~eddietwo/type/index.html#t1utils

7See http://pfaedit.sourceforge.net/

and Gothic/Heiti face. However, the current imple-
mentation of Ω/CHISE does not store the typeface
design information during the typesetting process—
we simply create the both for each character at the
same time.

4.4 Fonts

As explained above, we use PostScript Type 1
format for the fonts created by the second ΩTP.
A Type 1 font can contain only 256 glyphs which
are available at one time for typesetting.8 However,
typesetting of a CJK document can possibly require
more than 256 glyphs thus created. We therefore
bandle multiple Type 1 fonts together into a large
virtual font, which, in the current implementation
of Ω, can contain at most 256 sub-fonts or 65536
glyphs. We define two virtual fonts for each type-
face design (Mincho and Gothic), i.e. four virtual
fonts in total. This allows 65536×2=131072 glyphs
to be used for each typeface. This should be rea-
sonably sufficient for normal use, and, if need be, a
simple modification to the second ΩTP allows more
glyphs to be used.

The four virtual fonts are named respectively
chise000min.ovf, chise001min.ovf, chise000got.ovf
and chise001got.ovf. Under each virtual font are
included sub-fonts named chisesub000min ... chis-
esub255min, chisesub256min ... chisesub511min,
etc. (See Figure 3)

We prepare beforehand the dummies for all the
256×2×2=1024 sub-fonts that are placed in sys-
tem’s TEXMF tree. This is necessary because at the
moment the document is being typeset, we cannot
know how many glyphs will be needed. When the
typesetting process is terminated and the necessary
fonts are created, the DVI-PDF conversion program
(dvipdfmx) first looks at the current working direc-
tory and uses the newly created fonts which are to
be found there: they override the dummy fonts.

5 Concluding remarks

In guise of conclusion, we shall enumerate major
problems and TODOs of Ω/CHISE implementation.

8More precisely, more than 256 glyphs can in fact be de-
fined in one Type 1 font, but only 256 at most of them can
be accessed through the encoding vector.

83

Virtual font (1)

chise000xxx.ovf

chisesub000xxx

chisesub001xxx

chisesub255xxx

...

...

256...

512...

0...

...65535

xxx: min or got

...

...

256...

512...

0...

...65535

Virtual font (2)

chisesub256xxx

chisesub257xxx

chisesub511xxx

chise001xxx.ovf

Figure 3: Virtual font composition

First, we should point out problems pertain-
ing to the current implementation of Ω it-
self. It is preferable that the external ΩTPs be
placed in the system’s TEXMF tree (e.g. in
/usr/local/share/texmf/omega/...) and Ω it-
self can find them without specifying where they
are, just as with internal ΩTPs/ΩCPs. Currently,
however, it is necessary to provide the full-path to
the external ΩTPs in the style-file. Furthermore,
as we explained above, it is currently impossible to
pass options/parameters to the external ΩTPs from
within the style-file. We can only hope these two
problems will be solved in a future version of Ω.

As for the font generation, there are two points to
be improved. First of all, we should catch up the de-
velopment of KAGE and be able to use fully its func-
tionality. The current implement of the Ω/CHISE
does not utilize KAGE’s glyph design parameter,
which allows a fine tuning of glyph design pref-
erence which is varied among the CJK languages.
Secondly, it is necessary to improve the quality of
generated glyphs. This is largely the matter of
KAGE development, but Ω/CHISE side may have
to do at least one thing. The glyph outlines that
KAGE returns have countour-overlaps which ap-
pear as blanks when printed. We tried the overlap-
removal function of pfaedit, but it does not function
properly, at least in the current version. It is there-
fore necessary to find some work-around. However,
given that the overlap-removal algorithm is a rather

complicated one and quite hard to write such a rou-
tine that works correctly, we find it not a good idea
to create our own (and we are not much interested
in that anyway...). We do not know what to do for
the moment: maybe we had better wait calmly until
pfaedit improves its overlap-removal.

Ω/CHISE is still in an experimental stage.
Though it works somehow, the current status is far
from being satisfactory. We shall continue the work
so that the system can meet the needs of potential
users (if any).9

Bibliography

[1] T. Morioka, et al., “CHISE Project”, in Jour-
nal of Japan Association for East Asian Text
Processing 4 (2003), 58–69.

[2] K. Kamichi, 「漢字フォント自動生成サーバ
“KAGE”の構築—文字コードの枠組みを超える
次世代漢字処理の提案—」, in Journal of Japan
Association for East Asian Text Processing 3
(2002),4–13.

9Ω/CHISE is available at:
http://cvs.m17n.org/cgi-bin/viewcvs/omega/?cvsroot=chise

84

