
A Specification for CDL

Character Description Language

Tom Bishop <tbishop@wenlin.com> and Richard Cook <rscook@unicode.org>

1 Introduction

Character Description Language (CDL) is for ac-
curately describing and displaying the forms of all
Han (CJKV) characters. This document, which is
the first public specification of CDL, presents the
key features and syntax of the language, and dis-
cusses some of its applications, especially to charac-
ter encoding standards work. We propose adoption
of CDL as a data management tool for ensuring ac-
curacy and long-term stability in the public charac-
ter encoding process.

The acute need for CDL is predicated upon the
fact that the set of Han characters is truly open-
ended, rather like the set of English words. His-
torical and idiosyncratic spelling differences present
a vast quantity of data, and a large number of
forms not easily related to currently encoded forms.
Witness the tens of thousands of characters being
evaluated by the IRG for inclusion in CJK Unified
Ideographs Extension C1.

CDL is based on Unicode, XML, and a few well-
known characteristics of Han characters:

• Most characters are formed by combining two
or more simpler characters or componentsand
fitting them into a square.

• Basic characters or components are composed
of strokes, which are classified into distincttypes
in accordance with modern orthographic con-
ventions.

• Identification of stroke types underlies consis-
tent counting of strokes.

• Stroke types, stroke counts, and component
analysis are essential to the learning pro-
cess,character recognition, indexing, and com-
parison of variant forms.

A set of less than fifty stroke types is sufficient
for the construction of practically all characters in a
modern printed style, as demonstrated by the exis-
tence of CDL descriptions for over 40,000 characters,

including all BMP Han characters and over 12,000
in Extension B.

2 The CDL Font Database

A CDL description of a character encodes an anal-
ysis of the character into its constituent compo-
nents and/or strokes, and simultaneously provides
instructions for displaying the char-acter. A collec-
tion of CDL descriptions can therefore serve as both
a database and a font.

When CDL is used as a font format, a software
interpreter converts the descriptions into glyphs in
real time. For Han characters, CDL has some ad-
vantages over conventional font formats. It is much
smaller ―only about 12 bytes per character, on av-
erage, when compressed. It is a kind of “meta-font”
in the sense that it has variable parameters so that
the same descriptions can produce different styles of
glyphs.1 New glyphs can be added to the font rela-
tively quickly and easily. Consistency between the
forms of related characters is easier to ensure as a
consequence of the sharing of components.

As a database language, CDL encodes essential in-
formation for categorizing, indexing, learning, and
recognizing Chinese characters. This information
includes stroke count, stroke types, stroke order,
component analysis, radicals and residual strokes,
and coordinates of strokes and components. While
some of this information is, or could be, stored in
an ordinary database, CDL is better for enforcing
consistency. For example, the stroke count of a
character is calculated algorithmically from actual
CDL instructions for writing the character stroke-
by-stroke; it is not merely a personal impression, or
gathered from one of various dictionaries that may
not be mutually consistent (or even individually self-
consistent) in counting the strokes of a particular
component.

3 Examples

Here is a description for 行, as a combination of
the components 彳 and 亍:

<cdl char="行">

<comp char="彳"

points="0,0 40,128" />

<comp char="亍"

points="60,12 128,128" />

</cdl>

Positions are given as points with two-dimensional
coordinates. The square enclosing the entire char-
acter has (x, y) coordinates ranging from (0, 0) for
the top left corner, to (128, 128) for the bottom right
corner.2 The numbers after彳 describe its bounding
rectangle on the left side of 行: (0, 0) is its top left
corner, and (40, 128) is its bottom right corner.3

Similarly, a rectangle is given for 亍 on the right
side of 行.

In order for the above CDL description to be car-
ried out as a set of instructions (e.g., for displaying
the character or counting its strokes), it is necessary
for the interpreter to refer to the separate descrip-
tions of the components, 彳 and 亍, as sequences
of particular stroketypes with specific coordinates.
Here is a description4 for 彳:

<cdl char="彳">

<stroke type="p"

points="107,0 10,46" />

<stroke type="p"

points="128,38 0,83" />

<stroke type="s"

points="86,70 86,128" />

</cdl>

There are three strokes in 彳. The first two (from
top to bottom) are both type ‘p’, which stands for
撇 piě, a curved stroke falling to the left. The third
stroke is type ‘s’, which stands for 竖 shù, a vertical
falling stroke. For each of these simple stroke types,
only two points areneeded. For example, the first
stroke starts at (107, 0) and ends at (10, 46).

Some descriptions combine components and
strokes. Here, the character 太 is described as a
combination of the component 大 (which itself is a
character, and should have its own description), and
a stroke of type ‘d’ (点 diǎn, dot):

<cdl char="太">

<comp char="大"

points="0,0 128,128" />

<stroke type="d"

points="45,104 66,128" />

</cdl>

4 Language Details

CDL is an XML application, which means that
it conforms to a widely-used standard syntax (us-
age of angle brackets < >, et cetera). We have al-
ready introduced most of the elements of the lan-
guage: each description is contained in a cdl ele-
ment, which can contain any number of comp (com-
ponent) and/or stroke elements. There is another
element, cdl-list, for enclosing a list (or file, font,
or database) of descriptions. The only CDL ele-
ments currently defined are these four: cdl-list,
cdl, comp, and stroke.

Both the cdl and comp elements have char (char-
acter) attributes. The value of the char attribute
is simply a character: typically a Han character,
which might be encoded with UTF-8 or any other
XML-supported encoding. Any character can, in
principle, be used as a com-ponent.5

The stroke element has a type attribute, whose
value is one of less than fifty names of stroke types
that are defined for CDL. This article has already
introduced ‘p’ for 撇 piě and a few others. One
of the most complex stroke types is ‘hzzzg’, which
stands for 横 折 折 折 钩 héng-zhé-zhé-zhé-gōu, and
is exemplified by the character 乃. It has six refer-
ence points, including four points of inflection be-
tween the starting and ending points. The essential
features of each stroke type are: its name; the num-
ber of reference points it uses; and the directions
and curvatures between the reference points. The
complete set of CDL stroke types is docu-mented in
another article.6,7

There is a form of recursion implied by CDL.
For example, a description of 龍 may refer (with
a comp tag) to a description of 立, which in turn
may refer (with another comp tag) to a descrip-
tion of 亠, which describes two individual strokes.
A CDL interpreter will therefore typically process
components within components within components,
using recursive algorithms (and scaling coordinates
according to bounding rectangles). Recursion stops

99

when stroke elements are reached.8

Any CDL description that uses comp elements can
be transformed automatically into a description that
uses only stroke elements. For example, 行 is de-
scribed as a sequence of two components 彳 and 亍,
each of which is in turn described as a sequence of
three strokes. Alternatively, 行 could be described
directly as a sequence of six strokes. A straight-
forward recursive algorithm can transform the com-
ponent description into the “strokes-only” descrip-
tion. The reverse transformation might be more dif-
ficult. Component descriptions are more generally
useful as well as more concise.9

5 Extending the Precision and Scope
of Character Sets

Compared with even the largest standard charac-
ter set, CDL provides more precision: the ability
to distinguish between unified variants. It also pro-
vides wider scope: a potentially infinite number of
Han characters.

CDL can describe and display particular variants
of characters that are “unified” (treated as equiv-
alent) in standard character sets. For example, in
Unicode the forms 者 (eight strokes) and 者 (nine
strokes) are both U+8005, but can be made distinct
using CDL.10

CDL can also be used for describing and display-
ing characters that are not in any standard char-
acter set. Some such characters might simply not
have been encoded yet; some might be new; some
might have extremely limited and special usages,
and therefore might not even be suitable for inclu-
sion in a standard character set.

The CDL instructions for displaying a character
can be composed whenever the need arises (prefer-
ably using a graphical user interface), and included
directly in a document using XML syntax. Of
course, the program displaying the text needs to
have the capability of interpreting the language,
possibly by means of a “plug-in” or “helper” ap-
plication; people reading the text simply see the re-
sulting image of the character, not the CDL tags.

6 Managing Data for Character Set
Standardization

By simultaneously producing both a (meta-)font
and a database, CDL can enable standards organi-
zations to publish representative glyphs and stroke
counts (etc.), that are consistent with each other.
Furthermore, the language can facilitate systematic
treatment of the complex and difficult problems of
unification and variation. Currently, such system-
atic treatment is held back by the absence of an
intermediate representation of character forms, be-
tween abstract “char-acters” and concrete “images”
(or particular written/printed instances) of charac-
ters. Each Unicode codepoint represents an abstract
character, which corresponds to a potentially infi-
nite number of graphic images. Graphic images are
useful as examples of characters, but it is practically
impossible, in general, for an algorithm to determine
the stroke count of an image, or to measure the
degree of similarity between two images according
to the principles of Han unification. Consequently,
with over 70,000 Han characters already encoded,
it has become difficult to determine whether a given
glyph corresponds to any of the characters that have
already been encoded. Really there are two difficul-
ties: first, to find all the likely candidates for code-
points that might correspond to the glyph in ques-
tion; second, to decide for each of those codepoints
whether the glyph belongs to that codepoint’s im-
plicit equivalence class according to the unification
principles.

CDL can help resolve both of the difficulties just
mentioned. A CDL database could be built for
all encoded Han characters. Each character could
potentially have multiple CDL descriptions, corre-
sponding to variants11 that have been unified. Then,
when confronted with a glyph, if one were uncer-
tain whether it was already encoded, one could con-
struct a CDL description for it, and run a program
to compare that description with those already in
the database, to find the closest matches. (Sev-
eral comparison algorithms could be applied for the
same character, some based on strokes, some based
on components.) Of course, a perfect match would
be unlikely, but trivial differences in coordinates or
stroke order would easily be rec-ognized as falling
within the scope of unification. Less trivial differ-
ences would still require judgment by experts, but

100

CDL would make it far easier for the experts to
apply the unification rules consistently. For exam-
ple, all the characters containing a given component
could be examined to discover any precedent for uni-
fying two variants of that component. If the decision
were made to unify the new glyph with an already
encoded character, in spite of some difference, then
the CDL for the new glyph could be added to the
database as a variant, thus providing a precedent,
making the unification rules more explicit, and fa-
cilitating future usage of the database.12,13

7 Origin and Current Status

CDL was originally designed and implemented (in
the C programming language) by one of the authors,
and is an integral part of Wenlin Software for Learn-
ing Chinese, published by Wenlin Institute, Inc.
Its original application was Wenlin’s Stroking Box,
which illustrates for learners how to write a charac-
ter stroke-by-stroke in slow motion. It turned out
to be fast enough for use as a general-purpose scal-
able font. It also provides stroke-count and stroke-
type information, and is even applied to handwrit-
ing recognition. However, the CDL language itself is
hidden from the user, and only the resulting stroked
characters are visible. Wenlin actually uses a com-
pressed binary format, which is equivalent to the
XML format, but very compact and fast for ma-
chine processing. Wenlin’s CDL was used to create
printed radical and stroke-order indexes for 9,638
characters in the ABC Chinese-English Comprehen-
sive Dictionary, published in 2003 by University of
Hawaii Press (ISBN 0-8248-2766-X).

Currently (October 2003) over 40,000 characters
have CDL descriptions, including all the Han char-
acters in Unicode 3.0 (with Extension A) and many
more that are in Unicode 4.0 (Extension B). These
descriptions were made by the authors.

8 Conclusion

Experience has shown CDL to be a useful lan-
guage for systematic treatment of Han characters.
While it undoubtedly still has room for improve-
ment, the authors have become convinced (with the
encouragement of several members of the Unicode
Technical Committee) that it should be made public

for the benefit of the international community, es-
pecially standards organizations. Comments, ques-
tions, and suggestions are welcome.

9 References

The latest revision of this article, and other in-
formation about CDL (including the list of stroke
types and a DTD14), may be found at http://www.
wenlin.com/cdl.

The Unicode Consortium website is http://www.
unicode.org. The International Standards Organi-
zation (ISO) website is http://www.iso.org. The
Ideographic Rapporteur Group (IRG) website is
http://www.cse.cuhk.edu.hk/∼irg.

XML (Extensible Mark-up Language) is described
at http://www.xml.org and http://www.w3.org/

XML.

10 Notes

1. The concept of a “meta-font” originated with
the METAFONT language (documented in The
METAFONTbook by Donald Knuth, 1986,
ISBN 0-201-13445-4). Although CDL is not
closely related to METAFONT, there is a pro-
cedure for converting CDL into METAFONT,
but currently only at a low-level in which the
glyph outline is exactly specified. A similar
procedure exists for converting CDL into the
PostScript language (PostScript is a trademark
of Adobe; see http://www.adobe.com).

2. All coordinates are decimal integers in the
range 0 through 128. CDL could easily be ex-
tended to allow floating-point numbers and/or
different ranges of coordinates. However, the
use of small integers and a power of two like
128 leads to compact storage and fast render-
ing even on slow machines, and has been found
to give plenty of precision. More sophisticated
versions of the language should allow symbolic
variable names, and even algebraic expressions,
to stand for coordinates. It should be possi-
ble to convert automatically from such “higher
level” versions of CDL into the basic “low-level”
version of CDL that uses only numerical coor-
dinates. For some purposes, it is likely to be

101

convenient to describe component and stroke
positions with less precision, with rough indi-
cations such as top, left, top-left, middle, etc.;
there should be utilities to support conversion
back and forth between such rough indications
and precise coordinates.

3. A clarification is needed regarding coordinates
and bounding rectangles. In general, the refer-
ence points for a stroke are inside the stroke,
roughly at the center of the tip of an imaginary
brush. For a thick stroke, the fat tip of the
brush may extend the radius of “ink” a consid-
erable distance in all directions from the refer-
ence point. The precise flow of ink depends on
the particular font style, and the same CDL de-
scription could be displayed differently by dif-
ferent interpreters (or by the same interpreter,
given a different set of preferences). What we
mean by the bounding rectangle of a compo-
nent is based only on the reference points; “ex-
tra ink” might extend about half the thickness
of a stroke in any direction beyond that rectan-
gle.

4. The description for 彳 has been simplified
slightly to make it easier to understand.
A better description might use the optional
points attribute of the cdl tag. Rather
than simply <cdl char="彳">, the opening
tag might be <cdl char="彳" points="24,0

104,128">. This means that when is displayed
by itself, it does not take up the entire square,
but instead has some space on both sides, mak-
ing it relatively tall and narrow. When 彳 (or
any character) is used as a component, however,
this points attribute is ignored, since the comp
tag has its own points attribute. The stroke
points should always make a component touch
all four edges of its grid, so that its bounding
rectangle is 0,0 128,128 before any scaling is
applied. The points attribute is even more im-
portant for 口 (“mouth”), which has a large
amount of space on all four sides; characters
like因 look best with a smaller amount of space
on all four sides. In general, any character with
a stroke running along an outside edge tends
to look better (especially in juxtaposition with
other characters) with some space on that edge;
so, 相 might have points="0,0 124,128".

5. Instead of, or in addition to, the char attribute,
CDL supports a uni attribute, whose value is
a hexadecimal Unicode scalar value (USV). For
example, uni="592A" has the same meaning as
char="太". Simultaneous use of char and uni
attributes is redundant but sometimes conve-
nient. If both are used, they should be con-
sistent. An optional variant attribute can be
used in addition to either char or uni, to as-
sociate identification strings for distinguishing
multiple descriptions for the same USV.

6. There is a widely-used system, commonly
known as the 札 zhá system, which puts all
strokes into only five stroke categories: 一 héng,
丨 shù, 丿 piě, 丶 diǎn, and 乛 zhé. Each of the
less than fifty CDL stroke types belongs to one
of the five 札 zhá stroke categories. Thus, 札
zhá classification can easily be obtained from a
CDL description.

7. There are head and tail attributes for stroke
elements, which describe minor changes to be-
ginning and end points of strokes, respectively.
Such changes are important for some typeface
styles, especially where strokes join; however,
they can be ignored for some simple styles, and
for many applications of CDL. They are docu-
mented in another article, along with the list of
stroke types.

8. A more explicit form of recursion could be sup-
ported, with one cdl tag allowed to occur inside
of another, acting as an anonymous component.
This would be one solution to the problem of
unencoded components. Another solution is to
assign private-use codes to unencoded compo-
nents, give them separate descriptions in the
same database, and use comp tags. The latter
solution has the advantage that the same com-
ponent can be used in more than one charac-
ter without duplicating its description. Ideally,
however, there should be standard (not private-
use) codes for many components that are useful
in CDL.

9. There are a few more optional attributes (such
as a radical attribute for specifying which
strokes in a character are considered to be its
radical), which are beyond the scope of this ar-
ticle.

102

10. Actually, Unicode includes two compatibil-
ity characters, related to U+8005 者, namely
U+FA5B and U+2F97A. The difference between
them seems to involve a slight difference in the
position of the extra dot.

11. In this context, we only distinguish “variants”
if they have nontrivial differences intheir CDL
descriptions. (Slight coordinate differences can
be regarded as trivial.) If there are two or more
distinct CDL descriptions of a unified character,
we call them all “variants” of each other, with-
out any implication about relative correctness
or deviance, since in general those qualities de-
pend on the locale, the context, and/or the eye
of the beholder.

12. While CDL can’t solve all the difficulties of Han
unification and variation, it can goa long way
toward making the principles and procedures
more rational. Just the ability to produce self-
consistent radical and stroke-count indexes of
the currently encoded Han characters will be
an advance. It would be a mistake to assume
that stroke count will always be fuzzy and ill-
defined, and that when looking up a character,
people will always have to be prepared to add or
subtract one or two from the stroke count when
their first guess fails. On the contrary, within
particular locales, such as the PRC, a tremen-
dous amount of careful work has been done, and
official publications such as现代汉语通用字笔顺
规范 (ISBN 7-80126-201-8) have standardized
not only the stroke counts but also the stroke
orders and stroke categories for thousands of
characters. The stroke count of one character
is generally related to the stroke counts of other
characters. Most characters are built from com-
ponents, and as long as the stroke counts of
those components are defined, there is rarely
any difficulty in adding them together to ob-
tain the combined stroke count. Therefore, if a
standard defines the strokes of a few thousand
characters, it implicitly defines the strokes of
many thousands of additional characters.

13. There are conflicting conventions (in different
countries, or even in the same country) for
the strokes of some characters that are never-
theless unified in Unicode. Using a variant

attribute in addition to a char (or uni) at-
tribute, a standard CDL database can include
several variants of a unified character, possi-
bly with different strokes or components. Some
kind of “variant selectors” could in this way
be given very precise meanings. Whether to
associate certain variants with certain locales
is another question, perhaps best decided sep-
arately by implemen-tations for particular lo-
cales; an international standard would simply
specify which variant selectors correspond to
which CDL descriptions.

14. Here is a minimal DTD (Document Type Defi-
nition); it omits a few optional orexperimental
attributes that were not mentioned in this doc-
ument:

<?xml encoding="UTF-8"?>

<!ELEMENT cdl-list (cdl)+>

<!ELEMENT cdl (comp|stroke)+>

<!ELEMENT comp EMPTY>

<!ELEMENT stroke EMPTY>

<!ATTLIST cdl

char CDATA #IMPLIED

uni CDATA #IMPLIED

variant CDATA #IMPLIED

points CDATA #IMPLIED

>

<!ATTLIST comp

char CDATA #IMPLIED

uni CDATA #IMPLIED

variant CDATA #IMPLIED

points CDATA #IMPLIED

>

<!ATTLIST stroke

type CDATA #IMPLIED

points CDATA #IMPLIED

head (cut|corner|vertical) #IMPLIED

tail (cut|long) #IMPLIED

>

103

