
Kyoto University 21st Century COE Program

Omega and OpenType Fonts

Yannis Haralambous and John Plaice

Abstract
The time has come for Omega to break its bounds with TFM/VF fonts and move forward to font formats

of the “real world.” Our choice of candidate of font format for Omega is the OpenType font format. In
this talk we start by describing the four-step process of switching to OpenType. Then we compare the
information contained in TFM/VF with the one of these fonts, and comment the necessary conversion
of TeX/Omega fonts into the new format. Finally, we give an almost complete list of TrueType and
OpenType tables and discuss their possible interest and modality of use, in the Omega context.

Keywords: Omega Fonts OpenType

Omega, the successor of TEX, uses OFM and OVF
fonts, which are an extension of TFM and VF fonts
to 16 bits. It produces DVI files, in which one finds
only names of TFM/OFM files and glyph positions
in the font tables. When converting DVI files into
PostScript, the task of finding the PostScript type 1
fonts corresponding to TFM/OFM and including
them in the PostScript code is handled by an ex-
ternal utility, odvips.

On the other hand, when a PostScript is converted
into PDF, Acrobat will guess the Unicode corre-
spondence of each glyph by inspecting the glyph’s
name in the PostScript font. This means that to get
textual information from the TEX file into the PDF
file one needs TFM/OFM and PostScript type 1 to
agree, and glyph names to be correct. Otherwise
we have no guarantee that everything will turn out
correctly.

Nowaday there are several font formats widely
used:

• PostScript type 1 fonts are inspired by
PostScript language: they are dictionaries,
glyphs are accessed by their names, their de-
scriptions use a very restricted set of special
PostScript operators. They have fixed encod-
ings with at most 256 positions;

• TrueType fonts are binary data structures
based on tables. Information in tables in ac-
cessible through pointers. Glyph descriptions
are accessed by their location in the code, there
is table (cmap) mapping them to Unicode posi-
tions. TrueType instructions can dynamically
modify the outline according to the context;

• OpenType fonts are TrueType structures with
TrueType or PostScript glyph descriptions.

They contain pattern-matching tables for con-
textual glyph positioning and substitutions;

• AAT fonts are TrueType structures with ex-
tra tables. They contain finite state machines
for glyph positioning and substitutions. (Ma-
cOS X);

• Graphite fonts (by SIL) are also TrueType
structures with extra tables, containing finite
state machines. For the time being they can be
used only in two programs: WorldPad (Win-
dows), and Drusilla (Linux).

Up to now Omega can only use TFM/OFM fonts
and odvips only VF/OVF and PostScript type 1
fonts. We have decided that the time has come to
switch to a TrueType based format. At the moment
the most promessing choice is OpenType, but AAT
and Graphite should not be neglected.

Adapting Omega to OpenType is a three-step pro-
cess:

1. make odvips read OpenType fonts,

2. convert Computer Modern and Omega fonts
into OpenType,

3. make Omega read OpenType fonts;

Step (1) of this process has been accomplished
with success. ENST Bretagne Students Gbor Bella
and Anish Mehta have worked on this project.

1 How odvips deals with OpenType
fonts

A utility called makepfc will extract data from a
TTF or OTF/CFF font and create a PFC font.

PFC is a TrueType-based data structure contain-
ing the following tables:

1. oCHR contains type 1 encrypted charstrings for
all glyphs in the font,

2. oMAP contains glyph code, Unicode character
correspondence, PostScript name and a pointer
to the location of each glyph in oCHR,

3. oGFD contains global font information,

4. oPRI contains the private dictionary,

5. oSUB contains subroutines;

PFC tables can be inside a TTF font or in a sep-
arate file.

odvips will find out which glyph codes are needed
and will extract the descriptions from the PFC file.
Then it will make as many internal PostScript type 1
fonts as necessary and will include them in the
PostScript file.

On figure ?? on can see an organigramm of the
various ways odvips will respond to a font request
in the DVI file.

Instead of making PFC, one could also make as
many type 42 fonts as necessary. But then odvips
would hence produce level 2 code and we have no
idea about how PostScript operators like glyphshow
or charpath would react.

Wa can also ask ourselves the question: is it a
good strategy to keep instructions? Is Omega going
to produce resolution-dependent PostScript code?

2 Storing TFM Data in OpenType

Let us see now how we will be able to store the
information already contained in TFM files in Open-
Type structures. A TFM file contains the following
information:

• Global information:

– CHECKSUM: not needed since can re-
calculated,

– DESIGNSIZE: can go into size feature of
the GPOS table,

– DESIGNUNITS: can go into unitsPerEm en-
try in head table,

– CODINGSCHEME, FAMILY, FACE: are obsolete
and useless;

• Basic font parameters:

– SLANT: can go into italicAngle in post

table,

– SPACE: can be the width of SPACE glyph,

– STRETCH not provided in OpenType phi-
losophy. Maybe it could be expressed as
width delta clusters in an AAT just ta-
ble,

– SHRINK (idem),

– XHEIGHT: can go into sxHeight entry in
OS/2 table,

– QUAD: not provided in OpenType philoso-
phy,

– EXTRASPACE: not provided;

• Other font parameters:

– DEFAULTRULETHICKNESS: can go into
underlineThickness in post table,
although this is not exactly the same
notion,

– SUPDROP could be ySuperscriptYOffset

in OS/2,

– SUBDROP could be ySubscriptYOffset in
OS/2,

– BIGOPSPACING1-5, SUP2, SUP3, SUB1,
SUB2, DELIM1, DELIM2: not provided,

– AXISHEIGHT: can go into BASE or base ta-
ble, but then we have to know which script
and language we will be using with this
font;

• Kerning pairs: KRN: can be converted into
lookups of type 2, in GPOS table;

• Dumb and smart ligatures: LIG, /LIG, /LIG>,
LIG/, LIG/>, /LIG/, /LIG/>, /LIG/>>: can be
converted into lookups of type 4, in GSUB table;

• Basic information for each glyph: figure 2 shows
that the dimension model of a glyph is different
for TEX and for OpenType.

– CHARWD: can go into hmtx table,

68

Figure 1: odvips responding to a font request in the DVI file.

height

baseline
depth

w
id

th

w
id

th

it
al

ic

co
rr

ec
ti

on

Figure 2: Dimensions for TEX/Omega and for Open-
Type.

– CHARHT: is not provided in OpenType phi-
losophy, although most of the time it is the
height of the glyph,

– CHARDP: same, but for the depth of the
glyph,

– CHARIC: not provided at all, since Open-
Type cannot act across fonts, and italic
correction is only useful when we change
fonts;

• Gadgets for each glyph:

– VARCHAR: can go into GPOS table,

– NEXTLARGER: can go into GSUB table.

Once we have stored TFM information into an
OpenType font we can consider virtual fonts:

• MOVE*, SETCHAR: can be obtained through True-
Type composite glyphs;

• POP, PUSH: are not really needed since we can
replace them by adequately chosen by MOVE*

instructions;

• SETRULE: we just need to draw a glyph in glyf

or CFF table;

69

• MAPFONT: it is not possible to include other
OpenType fonts: we will have to make big fonts
which include all glyphs;

• SPECIAL: it is not possible to include special
code in a glyph.

3 Using OpenType Data in Omega

Now that we have seen how to store TFM and
VF data in an OpenType structure let us consider
the inverse problem: given an OpenType font, how
can we take advantage of its data to typeset with
Omega?

We will take a quick overview of most of the in-
teresting OpenType tables.

3.1 cmap

This table provides a Unicode correspondence for
each glyph. It allows to find the right glyph name
when TTF or OTF is converted into type 1.

We will use it with format 4 (16 bits, eventu-
ally sparse), platformID 0 (Unicode), encodingID 0
(Unicode 2+)—or, if necessary, the one with
format 4 (16 bits, eventually sparse), platformID 3
(Windows), encodingID 1 (Unicode 2).

Nevertheless, let us note that the AAT table Zapf
is a better alternative than cmap.

3.2 head

This table contains general information about the
font. Among the data it contains, the unitsPerEm

value will be needed to translate glyph coordinates
into global ones, if we want to delve into glyphs.

3.3 hhea

This table contains general information about
horizontal typesetting with the font. It is of no in-
terest to Omega.

3.4 hmtx

This table contains horizontal widths for all
glyphs. It is absolutely essential to us because it
is the place where widths of glyphs are stored, but
there is a caveat : these widths can be modified a
posteriori by TrueType instructions, and this why
we also need the hdmx table.

3.5 maxp

This table contains maximum values for various
quantities (number of glyphs, max number of con-
tours, max number of Bézier points, etc.). Its only
interest is to provide useful values for memory allo-
cation when delving into glyphs. It is unnecessary
since we are using dynamic allocation of memory.

3.6 name

This table contains various textual information
about the font, in any language and encoding. Since
Omega is not interactive, it could be useful only for
the log file: the name of the font in the name table is
more legible than its file name. This way we could
have multilingual (politically correct) log files.

3.7 OS/2

This table contains useful numeric data. For ex-
ample:

• sxHeight is the x-height, there is also
sCapHeight. These can be useful for accent
placement in the absence of marks;

• ulUnicodeRange1-4 can warn us that the cur-
rent font is not capable to typeset in a given
script, so that we can search for a substitute;

• panose can be used for finding a look-alike of
the current font, again for typesetting a missing
glyph;

• if no substitute font can be found,
xAvgCharWidth can be the width of the
“missing glyph;”

• usDefaultChar gives us a possible “missing
glyph;”

• ySuperscriptYOffset et al. can give us a
clue about how to typeset superscripts and sub-
scripts;

• usBreakChar: the word separator. Really a
bad idea!

• maxContext: how many glyphs must be kept in
memory to apply pattern matching.

70

3.8 post

This table contains information needed for con-
verting from TrueType to PostScript type 1 or
type 42.

The italicAngle entry contains the slant param-
eter which we need for accent placement, in the ab-
sence of GDEF marks.

The underlinePosition and underlineThick-

ness entries can be useful for underlining.
Some versions of post table also contain

PostScript glyph names for all glyphs: this can be
useful to odvips when creating mini-type 1 fonts.

3.9 loca

This table contains pointers to TrueType glyph
descriptions, it is indispensable if we want to delve
into glyphs, useless otherwise.

3.10 glyf

This table contains TrueType glyph descriptions,
bounding boxes and instructions. We may want to
delve into glyphs to find out information about their
shapes, in the absence of marks. For example in the
figure below:

we have an Esperanto letter “h” with circumflex ac-
cent. Only by examining the glyph outline, and do-
ing shape recognition, will we be able to place the
circumflex accent correctly on the letter.

Nevertheless we must be very carefull with True-
Type instructions because they can modify shapes,
origin points and widths!

3.11 fpgm, prep, cvt

These tables contain TrueType instructions ex-
ecuted when the font is loaded, or when its size
its changed. They can be useful to Omega only if
we have to execute instructions to get resolution-
dependent values related to glyph shapes.

3.12 CFF

This table contains the PostScript type 2 descrip-
tions of glyphs. Once again, it can be useful to
Omega only if we want to delve into glyphs. It will
be more difficult to analyze than TrueType glyph
descriptions.

Also we must consider the fact that type 2
charstrings can not be executed by ordinary
PostScript interpreters, which is quite a paradox,
and hence type 2 fonts must be converted into
type 1. This conversion is mostly straightforward,
since most type 2 operators are there only for opti-
mization, others are mathematical and can easily be
replaced by the calculated result. Only a few can-
not be converted at all, as for example the random

operator.

3.13 VORG

This table contains the coordinates of vertical ori-
gins of glyphs. It is absolutely necessary when doing
vertical typesetting.

3.14 EBLC, EBDT, EBSC

This table contain bitmap glyphs and related in-
formation. We would need to convert these into
PostScript type 3, in the same way as PK fonts.
Is this necessary?

First of all, there will always be bitmap fonts
around.

And also Luc Devroye seeks the perfect font, a
bitmap font with a resolution such that pixels have
the size of molecules.

So, let us keep the bitmap option open.

3.15 DSIG

This table contains a digital signature of the font.
It should be avoided since it is only a good way to
make font developers pay $400 per year for the rest
of their life.

But it does raise the question of authentication of
fonts, which, in turn, raises the question of identifi-
cation of fonts.

3.16 gasp

This table informs the system about how to ras-
terize the font. It is useless to Omega.

71

3.17 hdmx, LTSH

The hdmx table contains glyph widths in pixels,
not to confuse with hmtx, which contains values in
abstract glyph coordinates. It can be useful if we
want to produce PostScript code for a given res-
olution (for exemple, for low-resolution hand-held
devices—there is a project on making fonts for Palm
with Metafont.

The LTSH table contains values from which inter-
polation is linear. It gives us a range of possible
acceptable resolutions for a given typeset document.

3.18 kern

This is the old way for obtaining kerning pairs.
This table can have various subtables in different
formats: format 0 is the plain one; format 3 is the
AAT one: it contains a finite state machine. An ex-
ample where this could be useful: “S.A.V.” would be
much better typeset with a small kern between the
period and the “V”: “S.A.V.” but this kern should
only occur when the period is preceded by an “A,”
or a similar letter.

In OpenType it is better to use GPOS to obtain
contextual kerning.

This raises a problem: Omega, like TEX, does not
use a SPACE character, so how do we kern with it?
We need to be able to apply kerning to word bound-
aries, when not at line boundaries.

3.19 VDMX

This table contains global pixel information about
vertical typesetting (not to confuse with an hypo-
thetical vertical version of hdmx). It is of little use
to Omega.

3.20 vhea, vmtx

These are the vertical counterparts of hhea and
hmtx. The latter is absolutely necessary if we want
to typeset vertically: it contains the vertical widths
of glyphs.

3.21 BASE

This table contains the heights of various base-
lines, relative to the dominant script (see fig. 3).

They could be quite useful to Omega when mix-
ing scripts. It raises the question: should baseline

changes be valid only for the current font, or should
they be persistent between fonts?

3.22 Advanced Typography tables

The tables GPOS, GSUB, GDEF and JSTF are the
OpenType “Advanced Typography” tables.

The system works as follows: the user choses fea-
tures, which call lookups. Lookups apply transfor-
mation rules which are either positionning (GPOS) or
substitution (GSUB) rules.

In a TEX document, feature choices have to be in-
dicated by special primitives. In an Omega IDE, one
should expect to have an OpenType-compliant edi-
tor which will include the feature-choice primitives
in a transparent way.

Let us consider these tables.

3.23 GPOS

The table GPOS contains lookups for glyph posi-
tioning. There are 9 kinds of lookups:

• lookup type 1: simple positionning. This lookup
will move a glyph in some direction, when this
lookup is requested by a feature. In the follow-
ing example, parentheses are raised to obtain a
better fit with capital letters:

• lookup type 2: pair positionning, as for example,
kerning. This is actually more powerful than
kerning since either one of the two glyphs can be
moved in any direction. One can use individual
glyphs, glyph classes or covering tables;

• lookup type 3: cursive attachment. Very useful
for calligraphic scripts or Arabic. One often
forgets one of the flags of the lookup, which
indicates whether it is the first or the last glyph
of a sequence which is aligned on the baseline.

72

Figure 3: Base lines for three different scripts: latin, ideographic and tibetan.

This lookup is essential for writing in Urdu, but
we need a special micro-engine in Omega, which
will be able to memorize glyph positions and
move a whole block at the end of a “run.”

• lookup types 4 and 6: diacritics, and diacrit-
ics upon diacritics. These lookups define at-
tachment marks. This can be eextremely use-
ful for Omega since it will allow placement
of arbitrary diacritics over arbitrary letters or
other diacritics—nevertheless one must be care-
ful about potential kerning: if a given diacritic
has to be kerned with a base glyph, or if we
have to kern between two diacritics, special at-
tachment marks must be defined, and this can
quickly become a mess.

• lookup type 5: diacritics on ligatures. It defines
attachment marks for different parts of a liga-
ture glyph. It can also be extremely useful for
Omega. Especially in fonts like Prestige:

where we have many ligatures and need to place
accents upon them. This operation raises some
interesting questions: what is the accent that
should be upon INDNIABLE in the exemple
above? Is it a grave or an acute accent?

• lookup type 7: contextual positionning. It is
a kind of “virtual” lookup, since it calls other
lookups (of types 1–6) when a certain pattern
is matched. Here is an example of contextual
kerning:

Contextual positionning can be easily con-
verted into an OTP, except that we need better
primitives for moving glyphs vertically (besides
\raise). Even if glyphs are moved vertically
they must remain a single glyph chain, so other
lookups can be applied.

• lookup type 8: extended contextual positionning.
This lookup type is like type 7, but uses also a
backtrack and a lookahead.

The lookahead can be easily used into an OTP,
with the <= operator which will put characters
back into the data flow. For the backtrack we
need to extend the operational model of OTPs:
one must be able to go back and fetch the last
characters read. This raises a question: is the
Omega buffer compatible with the concept of
OpenType “run”?

3.24 GSUB

The GSUB table contains lookups for glyph substi-
tution (typically what we find in OTPs). There are
8 kinds of lookups;

• lookup type 1: simple substitution. It replaces
a glyph by some other glyph and can be easily
converted into an OTP;

• lookup type 2: multiple substitution. It replaces
a glyph by more than one glyphs and can also
be easily converted into an OTP;

• lookup type 3: choice of variant. This lookup
can be used only interactively, to choose be-
tween glyphs representing the same character.

73

In an Omega IDE, one should expect the text
editor to include the glyph index in the TEX
code together with the Unicode position, so
that Omega can access both directly;

• lookup type 4: ligatures. It replaces more than
one glyphs by one glyph and can be easily con-
verted into an OTP;

• lookup type 5: contextual substitution. It is a
“virtual” lookup as in GPOS and can be easily
converted into an OTP;

• lookup type 6: extended contextual substitution.
It is like the lookup type 5 but with lookahead
and backtrack. Same remark as for GPOS: looka-
head can be implemented in an OTP with <=

operator, but backtrack needs more care;

• lookup type 8: reverse extended contextual sub-
stitution. This lookup has been especially in-
vented for Urdu. In the figure below we can see
the same Arabic letter beh typeset several times
in a row, and taking different forms depending
on the context. Urdu requires the substitution
of letter forms to start at the end of the string,
and this is why this lookup is necessary:

=

À
Á Â

Ã Ä
Å

To be converted into an OTP, this lookup has
to be converted into a type 6 first.

3.25 JSTF

This table gives a preference order of features to
apply for optimizing justification. It can be quite
dangerous (some features should not be applied ran-
domly). Like TEX, Omega can do justification very
well, so this table may not be needed.

Nevertheless it raises a question: which features
should be activated by the user only, which ones
should be automatic, and which ones should be ac-
tivated by the line-breaking algorithm?

4 AAT tables

Besided OpenType, there is also AAT. AAT uses
features like OpenType, but with two advantages:

AAT features have selectors, and AAT features have
names in the name table. While OpenType relies on
software, AAT features are chosen on a system level.

Here are some interesting AAT tables.

4.1 opbd

This table provives optical bounds to glyphs. It
can be very useful, especially for italic or when mix-
ing fonts with different sidebearings. In the follow-
ing example we see the same text with and without
optical bounds;

(It is a tri-lingual love poem for my wife, with a
reference to Goethe’s Faust.)

4.2 trak

In TEX tracking has been avoided until now, prob-
ably because English language typesetters claim
that “letterspacing is like steeling sheeps.” Never-
theless, s o m e l a n g u a g e s (G r e e k, R u s s i a n,
G e r m a n) need letterspacing. Tracking is also part
of the AFM specification, it can be useful if used like
alcohol (in small quantities, or as medecine).

The difference between letterspacing and tracking
is that the former should be selective, and the latter
not.

74

4.3 Zapf

Named after a famous font designer which we will
not name in the present text.

This table gives a lot of information on each glyph:
its PostScript glyph name, Unicode correspondence,
the fact if it is Japanese kanji or Chinese han or
Korean hancha, an historical memorandum, etc. It
can be useful for chosing the right glyph according
to the context.

4.4 *var

The tables fvar, gvar, avar, cvar deal with
“variations:” the AAT equivalent of Multiple Mas-
ter fonts. They could be useful for generating on-
the-fly font instances which will solve specific type-
setting problems. But, they are unstable, hard to
implement, and their features bit more flexible than
Multiple Masters, but still not flexible enough.

4.5 morx

This is the heavy-duty AAT table. It uses finite
state machines as in the following example where we
replace a person’s first name by an initial, eventually
keeping an “h”:

if not letter

if not letter
if not letter

if consonant, except “h”

if consonant, except “h”

if vowel
or “h”

if vowel
or “h”

if non-letter

if letter

keep
insert
a point

delete,
insert
a point

keep,
insert
a point

keep,
insert

a point

keep

keep

keep

keep

keep

keep

delete

initial state 1
(«line start»)

initial state 0
(text begin)

second
glyph

word
interior

if “h”

if letter other than "h"

The morx table has 5 operations:

• operation 0: glyph re-ordering, very useful for
Indic and South-East Asian languages;

• operation 1: contextual substitution;

• operation 2: ligatures (out of up to 16 compo-
nents);

• operation 4: simple glyph substitution (no fi-
nite state machine);

• operation 5: glyph insertion;

Technically, finite state machines can be easily
converted into OTPs, since these have states as well.

4.6 just

The just table is like the OpenType table JSTF (it
aims to optimize justification), only more intelligent.
It has a quantitative and a qualitative part.

In the quantitative part one can define width vari-
ation, or even glyph variation. This could be a so-
lution for the TEX SHRINK and STRETCH parame-
ters, only here we can apply them to any glyph. It
has special options for keshided, white spacing, and
other glyphs.

The qualitative table is like JSTF: one choses ac-
tions (ligature decomposition, glyph insertion, glyph
stretching, repeated glyph insertion: a phenomenon
similar to TEX’s rules).

5 Open Questions

• What is still missing, despite the magnificence
of OpenType and AAT?

• to handle Arabic correctly one needs dynami-
cally variable glyphs;

• TEX virtual fonts can combine glyphs from sev-
eral fonts, this could be very profitable to Open-
Type/AAT;

• more generally, what happens between fonts?
How can two fonts communicate/interact?

• could automatic kerning be an option? islands
that communicate?

• software like FontLab or PFAEdit has functions
for “boldening” or “lightening” glyphs. This
could be an option for automatic optical correc-
tion, or for automatic typographical gray cor-
rection;

• the context of OpenType fonts is a “run”, the
one of OTPs is a buffer. How about a more
global context, where can say that we are at
paragraph begin, or at page begin, or at docu-
ment begin...

75

Bibliography

[1] Apple Computer. TrueType GX Font For-
mats, April 1993.

[2] Apple Computer. QuickDraw GX Ty-
pography. Addison-Wesley, June
1994 ftp://ftp.apple.com/developer/

Technical_Publications/Archives/QDGX_

Typo%graphy.sit.hqx.

[3] Gábor Bella, Anish Mehta and Yannis Har-
alambous. Adapting odvips to OpenType
fonts. TUGboat, 24(1) (to appear), 2003.

[4] Microsoft Typography Division. The Open-
Type Specification, v. 1.4, October 2002
http://www.microsoft.com/typography/

otspec/default.htm.

[5] Yannis Haralambous. Fontes et codages.
O’Reilly, Paris, 2004.

[6] Martin Hosken and Sharon Correll.
Extending TrueType for Graphite.
Technical report, Summer Institute
for Linguistics, March 2003 http:

//scripts.sil.org/cms/sites/nrsi/

media/GraphiteBinaryFormat_pdf.pd%f.

[7] Microsoft. Digital signatures http:

//www.microsoft.com/typography/

developers/dsig/default.htm.

[8] Microsoft. Recommendation for
OpenType fonts, November 2002
http://www.microsoft.com/typography/

otspec/recom.htm.

[9] Adobe Systems. OpenType feature file
specification, v. 1.4, January 2003
http://partners.adobe.com/asn/tech/

type/otfdk/techdocs/OTFeatureFileSyn%

tax.jsp.

76

